

Systeme für Verblendmauerwerk

Technische Information

30

30

36

37

37

Inhaltsverzeichnis

4 Verblenderkonsolen

Verblenderkonsolen JVAeco+

Anwendungsbeispiele

Verblenderkonsole JVAeco+ N/NA/NU	8	Luftschichtanker JLA
Winkel JW	10	Attika-Verblendanker JAV
Verblenderkonsole JVAeco+ P/PAR	12	Windposts JWP
<u> </u>		Maueranschlussanker JMA
Verblenderkonsole JVAeco+ E/EA	13	Maueranschlussschienen
Verblenderkonsole JVAeco+ F/FAR	14	Gerüstanker JGA+
Winkelausführungen für JVAeco+ F/FAR	16	Gerüstanker JGA+ Q
Rollschichthalter JRH	17	Gerüstanker JGA+ Z
Winkelkonsolen L-F+/L-DF+/L-DN+	18	
Verblenderkonsole JVAeco+ NFT/NAFT	20	
Abhängesystem JFT+	21	
Fertigteilsturzwinkel JFTW	22	
Individuell angepasste Konsolen	23	
Einmörtelkonsolen JMK+	26	

8 Zubehör

Montagehinweise	38	Einführung Verblenderkonsolen	46	Einführung Anwendungstechnik	55
Ankerschienen JTA-CE	40			Berücksichtigung von Öffnungen	55
EXPERT Software	41	Energieeffizientes Bauen mit Verblendmauerwerk	47	Befestigung von Verblenderkonsolen	56
Einführung zweischaliges Mauerwerk	42	Kenntnisse in der Bauphysik helfen Energie zu sparen!	48	Software Verblenderkonsolen	57
Fassadengestaltung und Fugenan-		Grundlagen ————————————————————————————————————	48	Edelstahl	58
ordnung	44	Beispielbetrachtung	52	Umgang mit Edelstahl	59
				Ausschreibungstexte	60
				Stichwortverzeichnis	61
				Service	62
				Unser Synergie-Konzept für Sie	62

Verblenderkonsolen
JVAeco+

Ob bei Neubauten oder Sanierungen: Energieeffizientes Bauen ist eines der großen Themen unserer Zeit. Gleichzeitig bestehen aber auch hohe ästhetische Ansprüche an die Fassadengestaltung. Die Verblenderkonsolen JVAeco+werden allen Anforderungen gerecht – vor allem dort, wo ein energetischer Nachweis der Gebäudehülle notwendig ist. In Kombination mit den Thermomanschetten JTM reduzieren sie den Wärmebrückenzuschlag signifikant. Die Verblenderkonsolen JVAeco+stellen für

Sie als Bauphysiker, Energieplaner oder Architekt aktuell das thermisch optimale Konsolsystem dar.

St.-Marien-Kirche zu Schillig: Eine besondere Herausforderung bildeten die geschwungenen Formen des Bauwerks, die bei der Konsolenplanung durch unsere Experten berücksichtigt wurden.

Vorteile

- Hervorragende wärmetechnische Eigenschaften
- Berücksichtigung von Wärmebrücken im detaillierten Verfahren bei der energetischen Betrachtung nach GEG
- Vermeidung des hohen pauschalen Wärmebrückenzuschlages von $\Delta U_{WB} = 0,10~W/(m^2K)$
- Für kreative Fassadengestaltung, auch bei hohen Bauten
- Einfacher Ausgleich von Toleranzen durch höhenverstellbaren Konsolkopf bzw. Schräglochplatte
- Kostengünstige Montage an einbetonierten Ankerschienen
- kostenlose Bemessungssoftware erhältlich (s. S. 57)

Eigenschaften

- Allgemeine bauaufsichtliche Zulassung Z-21.8-1868
- Dauerhaft korrosionsbeständig
- CE-Kennzeichnung
- Typenprüfung TP-12-0009
- Umwelt-Produktdeklaration (EPD)

Neue Laststufen

Eine kontinuierliche Weiterentwicklung der Verblenderkonsolen JVAeco+ ist ein weiterer Grund für die Einführung neuer und zusätzlicher Laststufen. Mit den erhöhten Traglasten von 28 % kann die Anzahl der Konsolen reduziert werden, und somit ergibt sich auch eine Reduzierung des Transmissionswärmeverlustes durch die Fassade. Um den bestmöglichen Service für eine wirtschaftliche und energieeffiziente Fassadenlösung bieten zu können, erweitern wir unser Sortiment auf jetzt insgesamt 5 Laststufen mit einer neuen max. Laststufe von 13,5 kN und einer Kraglänge von bis zu 390 mm.

- 4,5 kN neu
- 7,0kN
- 9,0 kN neu
- 10,5 kN
- 13,5 kN neu

EPD - Produktnachweis für nachhaltiges Bauen

Eine Umwelt-Produktdeklaration (auch als "EPD" - Environmental Product Declaration - bezeichnet) nach ISO 14025 und DIN EN 15804 bietet die Informationsgrundlage für die Ökobilanz und ist die Zusammenstellung aller umweltrelevanten Eigenschaften eines Produktes. Die produktbezogene Ökobilanz betrachtet somit den gesamten Lebenszyklus eines Produktes, und durch das angewandte Verursacherprinzip fließen die Emissionen entlang der gesamten Wertschöpfungskette in diese Betrachtung mit ein. Eine EPD stellt daher glaubwürdige, vergleichbare, transparente und nachprüfbare Informationen bereit! Als erster Hersteller mit einer Umwelt-Produktdeklaration für Verblenderkonsolen schaffen wir die Möglichkeit für Bauherren, Architekten, Projektplaner und Investoren, ein Nachhaltigkeitsprojekt nach DGNB, LEED oder BREEAM zu zertifizieren. Als Mitglied auf der Plattform Building Material Scout und unseren dort gelisteten Produkten lässt sich Ihr nächstes Bauvorhaben ökologisch und ökonomisch leicht realisieren.

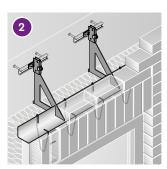
Bauphysikalisch optimiert

Um die Energieeffizienz der Systeme für Verblendmauerwerk zu steigern, haben wir den neuen Konsoltyp mit der Bezeichnung Verblenderkonsole JVAeco+ entwickelt und eingeführt. Durch ihre innovativen konstruktiven Eigenschaften sorgen die Verblenderkonsolen **JVAeco+** für eine Verringerung des Energieverlustes:

- Verwendung des hochfesten Lean-Duplex-Edelstahls, der eine Minimierung der Querschnitte, insbesondere des Stegblechs, ermöglicht
- Lasergeschnittene Aussparung im Stegblech und damit Reduzierung des wärmeleitfähigen Materials
- Zusammen mit der Thermomanschette JTM wird auch bei hinterlüfteten Fassaden im Bereich der Luftschicht der Wärmeverlust wirkungsvoll reduziert
- Für die Berechnung des Wärmedurchgangskoeffizienten U_c der gestörten Fläche sind punktbezogene Wärmedurchgangskoeffizienten x gemäß Zulassung vorhanden

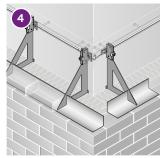
Vom DIBt zugelassene und geprüfte PohlCon Produkte

EPD für Verblenderkonsolen JVAeco+


Temperaturverlauf Verblenderkonsole JVAeco+ P

Anwendungsbeispiele

Normalwandbereich: Verblenderkonsolen JVAeco+ N/NA (s. S. 8) und JVAeco+ P/PAR (s. S. 12)


Öffnungen: Verblenderkonsole JVAeco+ F/FAR (s. S. 14)

Öffnungen mit Fertigteilstürzen: Verblenderkonsole JVAeco+NFT/NAFT (s. S. 20)

Außenecke mit Dehnungsfuge: Verblenderkonsole JVAeco+F (s. S. 14)

Außenecke ohne Dehnungsfuge: Verblenderkonsole JVAeco+ F (s. S. 14)

Randbereich:
Verblenderkonsole
JVAeco+P/PAR (s. S. 12)

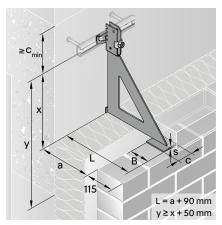
Dehnungsfuge und Randbereich:Verblenderkonsole
JVAeco+ E/EA (s. S. 13)


Sicherung des Verblendmauerwerks gegen Knicken: Luftschichtanker JLA (s. S. 30)

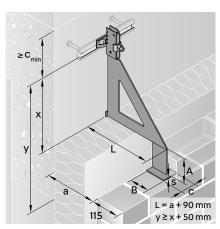
Horizontale Lagesicherung: Windpost JWP (s. S. 33) und Maueranschlussanker JMA (s. S. 34)

Abfangungen im Attikabereich: Attika-Verblendanker JAV (s. S. 32) und Maueranschlussanker JMA (s. S. 34)

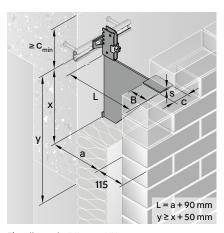
Gerüstsicherung: Gerüstanker JGA+ (s. S. 36)


Verblenderkonsolen

Verblenderkonsole JVAeco+ N/NA/NU


Ausführungsvarianten

Die Verblenderkonsolen JVAeco+ N/NA/NU fangen geschlossene Wandflächen ab:


- Ausführungsvariante N für das höhengleiche Konsolauflager (Abfangebene gleich Unterkante Stegblech)
- Ausführungsvariante NA mit tiefgesetztem Konsolauflager (Abfangebene gleich Unterkante Stegblech minus Versatzmaß A)
- Ausführungsvariante NU mit hochgesetztem Konsolauflager

Einzelkonsole JVAeco+ N

Einzelkonsole JVAeco+ NA mit tiefgesetztem Konsolauflager

Einzelkonsole JVAeco+ NU mit hochgesetztem Konsolauflager

Einbaumaß x in mm für Einzelkonsole JVAeco+N/NA/NU²⁾

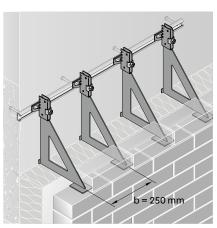
Laststufen mit Bemessungswiderständen

Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	4,5 kN F _{Rd} =6,08 kN	7,0 kN F _{Rd} =9,45 kN	9,0 kN F _{Rd} =12,15 kN	10,5 kN F _{Rd} =14,18 kN	13,5 kN F _{Rd} =18,23 kN
50 - 100	140 - 190	150	200	200	250	250
110 - 120	200 - 210	150	200	225	250	275
130 - 140	220 - 230	175	250	250	300	300
150 - 160	240 - 250	175	250	275	300	325
170 - 180	260 - 270	175	250	300	300	350
190 - 200	280 - 290	200	300	325	350	375
210 - 220	300 - 310	200	300	375	350	425
230 - 240	320 - 330	200	300	400	350	450
250 - 260	340 - 350	250	375	425	400	475
270 - 280	360 - 370	250	375	450	400	500
290 - 300	380 - 390	250	375	475	425	525
Auflagerplatte c x B	x s in mm	60 x 80 x 3	60 x 80 x 4	60 x 80 x 4	70 x 85 x 5	70 x 85 x 5

 $^{^{1)}}$ Toleranzen von $\pm 10~\mathrm{mm}$ können ausgeglichen werden

²⁾ JVAeco+ NU ohne Aussparung

Aufmauerhöhen


Die rechnerisch zulässige Aufmauerhöhe ergibt sich aus den Berechnungsansätzen, wie sie unten auf der Seite aufgeführt sind, und den Forderungen der DIN EN 1996-2 (s. S. 43). Für den Normalfall (ρ = 1800 kg/m³, t = 115 mm) kann die Belastung der Konsolen in Abhängigkeit von der Aufmauerhöhe folgender Tabelle entnommen werden.

Einbauabstände

Das vertikale Stegblech der Verblenderkonsole kann in die Stoßfugen zwischen den Verblendsteinen eingreifen. Der minimale Abstand der Konsolen beträgt 250 mm (entspricht einer Steinlänge im Normalformat) oder, bei Verwendung eines Winkels JW als Zwischenwinkel, ein Vielfaches davon.

Laststufen in kN der Verblenderkonsolen JVAeco+ N/NA/NU für den Normalfall¹⁾

Aufmauerhöhe H in m	Bemessungs- einwirkung ²⁾ F _{Ed} in kN	Bemessungs- widerstand F _{Rd} in kN	Erforderliche Laststufe der Konsole in kN
1	0,7	6,08	4,5
2	1,4	6,08	4,5
3	2,2	6,08	4,5
4	2,8	6,08	4,5
5	3,5	6,08	4,5
6	4,2	6,08	4,5
7	4,9	6,08	4,5
8	5,5	6,08	4,5
9	6,3	9,45	7,0
10	7,0	9,45	7,0
11	7,7	9,45	7,0
12	8,4	9,45	7,0

JVAeco+ N als Einzelkonsole im Normalwandbereich

Zubehör

Rollschichten (t = 115 mm) werden mit dem Rollschichthalter JRH 0 (s. S. 17) ausgeführt.

Bestellbeispiel Verblenderkonsole JVAeco+ NA

Тур	Kraglänge		Variante		Laststufe	Versatzmaß
JVAeco+	290	-	NA	/	4,5	A = 100

Die maximale Aufmauerhöhe H_{max} in m kann in Abhängigkeit des Konsolabstandes b für den Normalfall wie folgt berechnet werden:

$$H_{\text{max}} = \frac{F_{\text{Rd}}}{b \times t \times \rho \times 0.01 \, \text{kN} / \text{kg} \times \gamma_{\text{G}}}$$

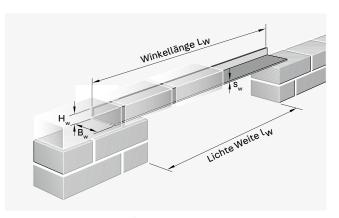
$$H_{\text{max}} = \frac{F_{\text{Rd}}}{b \times 2.8}$$

mit $\rho = 1800 \, \text{kg/m}^3$

 $t = 0,115 \, \text{m}$

 $\gamma_G = 1,35$ (Teilsicherheitsbeiwert)

b = Einflussbreite in m


¹⁾ Konsolabstand b = 250 mm

 $^{^{2)}}$ Gültig für Verblendmauerwerk mit Rohdichte ρ = 1800 kg/m 3 ; Dicke t = 115 mm

Winkel JW

Einsatz als Abfangung über Öffnungen

Winkel JW können einzeln zur Abfangung über Öffnungen verwendet werden, indem sie auf das seitliche Mauerwerk aufgelegt werden. Informationen zur Bemessungssoftware für Wandabfangungen finden Sie auf Seite 57. Für den Normalfall (Verblendmauerwerk $\rho=1800$ kg/m³ und t $=0,\!115$ m) kann die Auswahl des erforderlichen Winkelquerschnitts in Abhängigkeit der lichten Weite l_w von der Öffnung mit der folgenden Tabelle erfolgen.

Winkel JW als Abfangung über Öffnungen

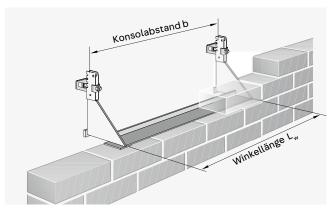
 $Winkel querschnitt^{2,3)} \, H_w \, x \, B_w \, x \, s_w \, in \, mm \, der \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Normalfall^{1)} \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Winkel \, JW \, als \, Abfangung \, \ddot{u}ber \, \ddot{O}ffnungen \, f\ddot{u}r \, den \, Winkel \, \ddot{U}r \, den \,$

					Licht	e Weite l _w der Ö	offnung in mm
	510	760	1010	1260	1510	1760	2010
					Zugeh	nörige Winkellä	inge L _w in mm
	700	950	1200	1450	1700	1950	2200
Aufmauerhöhe H in m							
≤0,50	L 25 x 90 x 2	L30×90×3	L40×90×3	L45×90×3	L60x90x3	L60x90x4	L70x90x4
≤ 0,75	L 25 x 90 x 2	L30x90x3	L45 x 90 x 3	L50x90x3	L60x90x3	L70x90x4	L80x90x4
≤ 1,00	L 25 x 90 x 2	L35×90×3	L45×90×3	L60x90x3	L60x90x4	L70×90×4	L80x90x4
≤ 1,25	L 25 x 90 x 2	L 30 x 90 x 3	L50x90x3	L60x90x3	L70x90x4	L80x90x4	L90x90x5
≤ 1,50	L 25 x 90 x 2	L 30 x 90 x 3	L 50 x 90 x 3	L70x90x3	L80x90x4	L80x90x5	L90x90x5
≤1,75	L 25 x 90 x 2	L 30 x 90 x 3	L50x90x3	L 60 x 90 x 3	L80x90x4	L80x90x5	L90x90x6
≤ 2,00	L 25 x 90 x 2	L 30 x 90 x 3	L50x90x3	L60x90x3	L70x90x4	L90x90x5	L90x90x6
≤ 2,25	L 25 x 90 x 2	L 30 x 90 x 3	L50x90x3	L60x90x3	L70x90x4	L80x90x4	L90x90x8
> 2,25	L 25 x 90 x 2	L30x90x3	L 50 x 90 x 3	L60x90x3	L70x90x4	L80x90x4	L90x90x5
Mind. Aufmauerhöhe H für Ansatz der Gewölbewirkung in m	0,71	0,94	1,17	1,4	1,63	1,85	2,08

 $^{^{1)}}$ Gültig für Verblendmauerwerk mit Rohdichte ρ = 1800 kg/m 3 , Dicke t = 115 mm

 $^{^{3)}}$ Max. Durchbiegung $\rm l_s/300~und~vorausgesetzter~E-Modul$ = 200.000 N/mm 2

Bestellbeispiel Winkel JW


Тур	Winkel	Länge
JW	L 50 × 90 × 3	1200

 $^{^{2)}\,}Bei\,einer\,Abfangung\,von\,mehr\,als\,zwei\,Geschossen\,ist\,der\,Querschnittswert\,B_{W}\,auf\,100\,mm\,zu\,vergr\"{o}Bern$

Einsatz als Zwischenwinkel

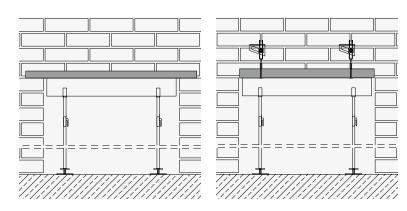
Winkel JW können als Zwischenwinkel für Verblenderkonsolen JVAeco+ N oder für Einmörtelkonsolen JMK+ N verwendet werden. Hierzu werden sie lose auf die Auflagerplatte der Verblenderkonsole gelegt. Informationen zur Bemessungssoftware für Wandabfangungen finden Sie auf Seite 57. Für den Normalfall (Verblendmauerwerk ρ = 1800 kg/m³ und t = 0,115 m) kann

die Auswahl des erforderlichen Winkelquerschnitts in Abhängigkeit des Abstandes b zwischen den Verblenderkonsolen mit der folgenden Tabelle erfolgen.

Winkel JW als Zwischenwinkel

Laststufen in kN der Verblenderkonsolen für den Normalfall¹⁾ mit Zwischenwinkel

Abstand b zwischen den Konsolen in mm


	500	750	1000
Aufmauerhöhe H		Zu	gehörige Winkellänge L _w in mm
in m	480	730	980
1	4,5	4,5	4,5
2	4,5	4,5	4,5
3	4,5	7,0	7,0
4	4,5	7,0	9,0
5	7,0	9,0	10,5
6	7,0	10,5	13,5
7	9,0	13,5	nicht möglich
8	9,0	13,5	nicht möglich
9	10,5	nicht möglich	nicht möglich
10	10,5	nicht möglich	nicht möglich
11	13,5	nicht möglich	nicht möglich
12	13,5	nicht möglich	nicht möglich
Winkelquerschnitt ^{2,3)} JW in mm	L 25 × 90 × 2	L 30 × 90 × 3	L 50 × 90 × 3

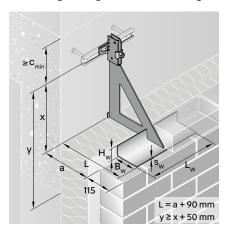
 $^{^{1)}}$ Gültig für Verblendmauerwerk mit Rohdichte ρ = 1800 kg/m 3 , Dicke t = 115 mm und mit Gewölbewirkung

Montagehinweis

Bei allen Konsolen mit angeschweißtem oder losem Winkel muss der Winkel so lange unterstützt werden, bis der Mörtel ausgehärtet ist.

Für den Einsatz mit Eckkonsolen können die Winkel maßgenau zugeschnitten werden.

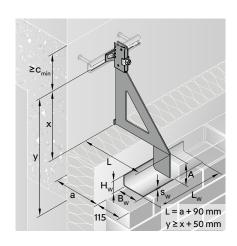
 $^{^{\}rm 2l}$ Bei einer Abfangung von mehr als zwei Geschossen ist der Querschnittswert $\rm B_W$ auf 100 mm zu vergrößern


 $^{^{3)}}$ Max. Durchbiegung $\rm l_s/300~und~vorausgesetzter~E-Modul$ = 200.000 N/mm 2

Verblenderkonsole JVAeco+ P/PAR

Ausführungsvarianten

Die Verblenderkonsolen JVAeco+ P/PAR werden bevorzugt im Normalwandbereich oder in Randsituationen, wie z. B. an Innenecken oder vertikalen Fugen, eingesetzt.


- Ausführungsvariante P für das höhengleiche Konsolauflager (Abfangebene gleich Unterkante Stegblech)
- Ausführungsvariante PAR mit tiefgesetztem Konsolauflager (Abfangebene gleich Unterkante Stegblech minus Versatzmaß A)

Einzelkonsole JVAeco+P

Einbauabstände

Das vertikale Stegblech der Konsole greift in die Stoßfugen zwischen den Verblendsteinen ein. Der Abstand der Konsolen beträgt 500 mm (entspricht zwei Steinlängen im Normalformat).

Einzelkonsole JVAeco+ PAR mit tiefgesetztem Konsolauflager

Einbaumaß x in mm für Einzelkonsole JVAeco+ P/PAR

Laststufen mit Bemessungswiderständen

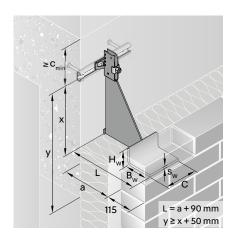
Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	4,5 kN F _{Rd} =6,08 kN	7,0 kN F _{Rd} =9,45 kN	9,0 kN F _{Rd} =12,15 kN	10,5 kN F _{Rd} =14,18 kN	13,5 kN F _{Rd} =18,23 kN
50 - 100	140 - 190	150	200	200	250	250
110 - 120	200 - 210	150	200	225	250	275
130 - 140	220 - 230	175	250	250	300	300
150 - 160	240 - 250	175	250	275	300	325
170 - 180	260 - 270	175	250	300	300	350
190 - 200	280 - 290	200	300	325	350	375
210 - 220	300 - 310	200	300	375	350	425
230 - 240	320 - 330	200	300	400	350	450
250 - 260	340 - 350	250	375	425	400	475
270 - 280	360 - 370	250	375	450	400	500
290 - 300	380 - 390	250	375	475	425	525
Auflagerwinkel ²⁾ H _W	x B _W x s _W in mm	35 x 100 x 3	45 x 100 x 3	50 x 100 x 3	55 x 100 x 3	60 x 100 x 3

 $^{^{\}rm 1)}$ Toleranzen von $\pm 10~{\rm mm}$ können ausgeglichen werden

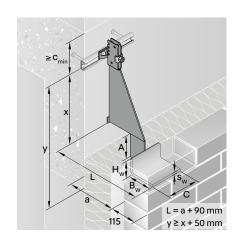
Bestellbeispiel Verblenderkonsole JVAeco+ PAR

Тур	Kraglänge		Variante		Laststufe	Versatzmaß
JVAeco+	290	-	PAR	/	4,5	A = 100

 $^{^{2)}}$ Winkellänge L_W = 300 mm


Verblenderkonsole JVAeco+ E/EA

Ausführungsvarianten


Die Verblenderkonsolen JVAeco+ E/EA werden bevorzugt im Endbereich von Verblendmauerwerksscheiben, wie z.B. an Innenecken oder vertikalen Fugen, eingesetzt. Die Konsole wird dort verwendet, wo ein Eingriff in die Stoßfuge nicht möglich ist. Sie unterstützt einzelne Verblendsteine.

Die Laststufen der Einzelkonsolen unterscheiden sich von denen der anderen Verblenderkonsolen JVAeco+.

- Ausführungsvariante E für das höhengleiche Konsolauflager (Abfangebene gleich Unterkante Stegblech)
- Ausführungsvariante EA mit tiefgesetztem Konsolauflager (Abfangebene gleich Unterkante Stegblech minus Versatzmaß A)

Einzelkonsole JVAeco+E

Einzelkonsole JVAeco+EA mit tiefgesetztem Konsolauflager

Einbaumaß x in mm für Einzelkonsole JVAeco+ E/EA²⁾

Laststufen mit Bemessungswiderständen

Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	2,5 kN F _{Rd} =3,38 kN	3,5 kN F _{Rd} =4,73 kN	5,0 kN F _{Rd} =6,75 kN	7,5 kN F _{Rd} =10,13 kN
50 - 60	140 - 150	150	150	150	200
70 - 120	160 - 210	150	150	150	200
130 - 180	220 - 270	175	175	175	250
190 - 240	280 - 330	200	200	200	300
250 - 280	340 - 370	200	200	225	375
290 - 300	380 - 390	200	200	250	375
Auflagerwinkel H _W)	(B _W x s _W - C in mm	55 x 110 x 6 - 100	70 x 110 x 8 - 110	70 x 110 x 8 - 110	70 x 110 x 10 - 140

 $^{^{\}mbox{\tiny 1)}}$ Toleranzen von $\pm 10~\mbox{mm}$ können ausgeglichen werden

²⁾ JVAeco+ E/EA ohne Aussparung

Bestellbeispiel Verblenderkonsole JVAeco+ EA

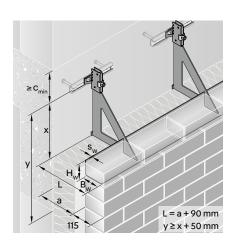
Тур	Kraglänge		Variante		Laststufe	Versatzmaß
JVAeco+	290	-	EA	/	5,0	A = 100

Verblenderkonsole JVAeco+F/FAR

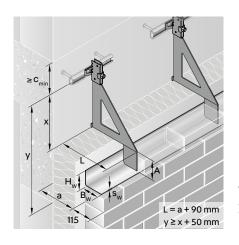
Ausführungsvarianten

Die Verblenderkonsolen JVAeco+F/FAR sind kombinierte Abfangkonsolen mit durchgehendem Auflagerwinkel und zwei oder mehreren Konsolankern. Sie fangen sichtbare oder unsichtbare Gebäudeöffnungen oder Außenecken mit bzw. ohne Vertikalfugen ab:

- Ausführungsvariante F für das höhengleiche Konsolauflager (Abfangebene gleich Unterkante Stegblech)
- Ausführungsvariante FAR mit tiefgesetztem Konsolauflager (Abfangebene gleich Unterkante Stegblech minus Versatzmaß A)


Lieferlängen

Unterschiedliche Systemlängen im Raster von 250 mm werden angeboten, andere Längen und Raster werden auf Anfrage gefertigt.



Hinweise

Die Auflagerwinkel müssen bis zur Aushärtung des Mauermörtels vollflächig und ausreichend unterstützt werden, um eine unerwünschte Durchbiegung zu vermeiden!

Winkelkonsole JVAeco+ F

Winkelkonsole JVAeco+ FAR mit tiefgesetztem Konsolauflager

Einbaumaß x in mm für Winkelkonsole JVAeco+ F/FAR

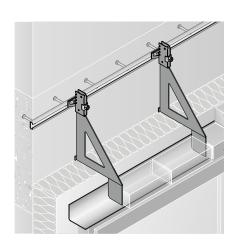
Laststufen mit Bemessungswiderständen

Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	4,5 kN F _{Rd} =6,08 kN	7,0 kN F _{Rd} =9,45 kN	9,0 kN F _{Rd} =12,15 kN	10,5 kN F _{Rd} =14,18 kN	13,5 kN F _{Rd} =18,23 kN
50 - 100	140 - 190	150	200	200	250	250
110 - 120	200 - 210	150	200	225	250	275
130 - 140	220 - 230	175	250	250	300	300
150 - 160	240 - 250	175	250	275	300	325
170 - 180	260 - 270	175	250	300	300	350
190 - 200	280 - 290	200	300	325	350	375
210 - 220	300 - 310	200	300	375	350	425
230 - 240	320 - 330	200	300	400	350	450
250 - 260	340 - 350	250	375	425	400	475
270 - 280	360 - 370	250	375	450	400	500
290 - 300	380 - 390	250	375	475	425	525

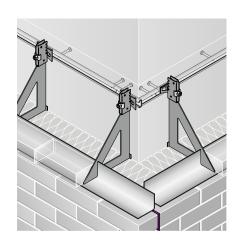
 $^{^{1)}}$ Toleranzen von $\pm 10~\mathrm{mm}$ können ausgeglichen werden

Einsatz als Abfangung über Öffnungen

Verblendmauerwerk über Öffnungen kann sichtbar als Läuferoder Roll- bzw. Grenadierschicht mit sichtbarem Auflagerwinkel oder unsichtbar mit abgehängter Roll- bzw. Grenadierschicht abgefangen werden. Bei einer unsichtbaren Abfangung werden die untergehängten Verblendsteine mit Rollschichthaltern und Edelstahldraht gesichert (s. S. 17). Bei beiden Varianten sind eine höhengleiche und eine höhenversetzte Abfangung möglich.


Einsatz an Außenecken

Bei Außenecken mit vertikaler Dehnungsfuge werden ein oder zwei Winkelkonsolen mit oder ohne Leibungsecke angeordnet. Bei Außenecken ohne vertikale Dehnungsfuge werden zwei Winkelkonsolen mit Gehrungsschnitt angeordnet. Bei Außenecken im nicht sichtbaren Bereich werden Winkelkonsolen ohne Gehrungsschnitt verwendet.

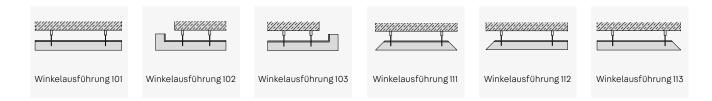


Hinweise

Es ist darauf zu achten, dass der Konsolanker so weit von der Gebäudeecke entfernt ist, dass die erforderlichen Randabstände für die Befestigung an Ankerschienen bzw. Dübeln eingehalten werden. Ist dies nicht möglich, stehen Sonderkonsolen, z. B. Konsolen mit Zuglasche (s. S. 23), zur Verfügung.

Sichtbare Abfangung über Fensteröffnung mit JVAeco+ FAR

Ausführung einer Außenecke mit vertikaler Dehnungsfuge mit Verblenderkonsolen JVAeco+ F

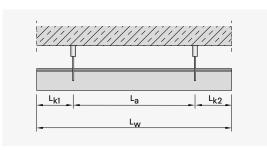

Bestellbeispiel Verblenderkonsole JVAeco+ F

Тур	Kraglänge L Winkellänge L _w		Variante		Laststufe		Winkelabmessung	
JVAeco+	290	-	1490	-	F	/	7,0	(L70 × 100 × 3)

Winkelausführungen für JVAeco+ F/FAR

Winkelausführungen

Die Verblenderkonsolen JVAeco+F/FAR besitzen je nach Einbausituation unterschiedliche Auflagerwinkel. Die Abmessung der Auflagerwinkel über Öffnungen ist abhängig von der lichten Weite der Öffnung und der vorhandenen Aufmauerhöhe. Dabei müssen auch eventuelle Grenadier- bzw. Rollschichten berücksichtigt werden.



Erforderliche Laststufen in kN und Winkelquerschnitte $H_w \times B_w \times s_w$ in mm der Verblenderkonsolen JVAeco+ F/FAR für den Normalfall 1

Lichte Weite der Öffnung l_w in mm

	510	760	1010	1260	1510	1760	2010	2260	2510	2760
		-	-	Länge d	er Winkelk	onsole L _w in	mm; Konso	lankerabstä	inde L _{k1} /L _a	L _{k2} in mm
Aufmauer- höhe Hinm	L _w = 490 120/ 250/ 120	L _w = 740 120/ 500/ 120	L _w = 990 245/ 500/ 245	L _w = 1240 245/ 750/ 245	L _w = 1490 245/ 1000/ 245	L _w = 1740 370/ 1000/ 370	L _w = 1990 370/ 1250/ 370	L _w = 2240 495/ 1250/ 495	L _w = 2490 495/ 1500/ 495	L _w = 2740 620/ 1500/ 620
1	L30×100×3	L30×100×3	L30×100×3	L30×100×3	L50×100×3	L40×100×3	L60×100×3	L50×100×3	L60×100×3	L60×100×3
2	L30×100×3	L30×100×3	L30×100×3	L30×100×3	L50×100×3	L50×100×3	L70×100×3	L50×100×3	L80×100×3	L80×100×3
3	L30×100×3	L30×100×3	L30×100×3	L40×100×3	L60×100×3	L50×100×3	L80×100×3	L60×100×3	L90×100×3	L90×100×3
4	L30×100×3	L30×100×3	L40×100×3	L40×100×3	L70×100×3	L60×100×3	L80×100×4	L80×100×3	L90×100×4	L100x100x3
5	L30×100×3	L40×100×3	L40×100×3	L50×100×3	L80×100×3	L60×100×3	L90×100×4	L80×100×3	L100x100x4	nicht möglich
6	L30×100×3	L40×100×3	L50×100×3	L50×100×3	L80×100×3	L70×100×3	L100x100x4	nicht möglich	nicht möglich	nicht möglich

 $^{^{1)}}$ Gültig für Verblendmauerwerk mit Rohdichte ρ = 1800 kg/m 3 , Dicke t= 115mm und 2 Konsolankern

Winkelkonsole JVAeco+ F/FAR mit zwei Konsolankern, Längen und Maßen

Hinweise

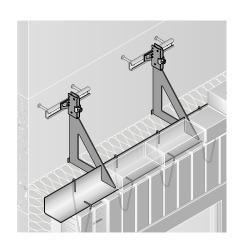
Sonderkonstruktionen und andere Winkelausführungen werden auf Anfrage auch für andere Produktvarianten der Verblenderkonsole JVAeco+ geliefert.

Bestellbeispiel Verblenderkonsole JVAeco+F

Тур	Krag- länge L	Winkel- länge L _w				Winkel- abmessung
JVAeco+	290 -	1490 -	- F	/ 7	,0	(L70 × 100 × 3)

Außerdem sind die Konsolankerabstände $L_{k1}/L_a/L_{k2}$ anzugeben, z. B.:

245	1000	245
L _{k1}	La	L _{k2}


Rollschichthalter JRH

Ausführungsvarianten

Rollschichthalter JRH können zur unsichtbaren Abfangung über Öffnungen mit Grenadier- bzw. Rollschicht und mit Läuferschicht verwendet werden. Hierzu werden sie an die Einzelkonsolen N/NA/NU oder Winkelkonsolen F/FAR montiert:

- Ausführungsvariante 0 und 20 für Rollschichtdicke 115 mm und Einzelkonsole JVAeco+ N/NA/NU
- Ausführungsvariante 1 7 und 21 27 für Rollschichtdicke 115 mm und Winkelkonsole JVAeco+ F/FAR
- Ausführungsvariante 11 17 für Rollschichtdicke 240 mm und Winkelkonsole JVAeco+ F/FAR

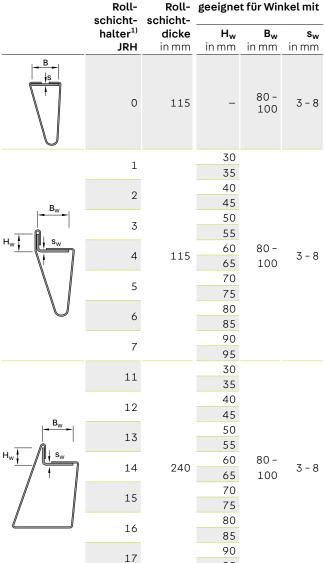
Die Rollschichthalter JRH mit einem Durchmesser von 4 mm aus Edelstahl der Korrosionsbeständigkeitsklasse III werden in einem Abstand ≤ 250 mm verwendet.

Unsichtbare
Abfangung über
Fensteröffnung mit
JVAeco+F, Rollschichthaltern JRH und
Edelstahldraht ESD

_		ᆫ	_	L	••	
_	ш	n	$\boldsymbol{\mathcal{L}}$	n	n	r

Der Edelstahldraht ESD kann in beliebiger Länge bis 3000 mm als Bewehrung für Grenadier- bzw. Rollschicht geliefert werden.

Bestellbeispiel Rollschichthalter JRH für L70 \times 100 \times 3, Dicke der Rollschicht 115 mm

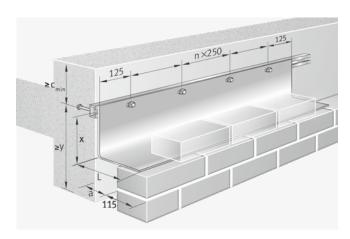

JRH 5	/	11,5
Typ und Ausführung		Rollschichtdicke

Bestellbeispiel Edelstahldraht ESD

Тур	Ø	Länge
ESD	4	3000

	Roll- schicht-	Roll- schicht-	geeigne	t für Win	kel mit
	halter ¹⁾ JRH	dicke in mm	H _w	B _w in mm	s _w in mm
B	20	115	-	80 - 100	3 - 8
	21		30 - 35		
	22		40 - 45		
B _W	23		50 - 55	0.0	
 	24	115	60 - 65	80 - 100	3 - 8
H _w s _w	25		70 - 75	100	
51	26		80 - 85		
	27		90 - 95		

95

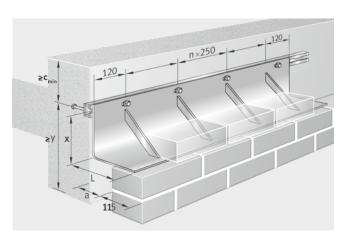

¹⁾Sonderformen sind auf Anfrage lieferbar

Winkelkonsolen L-F+/L-DF+/L-DN+

Ausführungsvarianten

Die Verblenderkonsolen L-F+, L-DF+ und L-DN+ sind einfache, effiziente Abfangsysteme ohne vertikale Verstellbarkeit. Diese werden eingesetzt, wenn die Abfangung sichtbar ist und Luftschicht und Dämmung vollständig abgedeckt werden sollen. Die Winkelkonsolen werden an durchlaufenden Ankerschienen oder Dübeln befestigt.

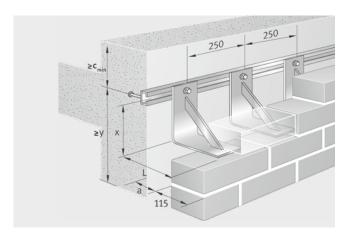
Die horizontale Ausrichtung wird bei den Winkelkonsolen durch die Langlöcher 11 × 30 (Abstand 250 mm) ermöglicht. Die Winkelkonsolen L-DF+ und L-F+ sind in Längen von 490 mm bis 2000 mm lieferbar. Andere Längen auf Anfrage. Die Laststufen der Winkel- und Einzelkonsolen unterscheiden sich von denen der anderen Verblenderkonsolen.



Winkelkonsole L-F+ ohne Diagonalaussteifung

Bestellbeispiel Winkelkonsole L-F+

Тур	Kraglänge L		Winkellänge L _w		Laststufe
L-F+	110	-	1000	/	2,1



Winkelkonsole L-DF+ mit Diagonalaussteifung

Bestellbeispiel Winkelkonsole L-DF+

Тур	Kraglänge L		Winkellänge $L_{\rm w}$		Laststufe
L-DF+	190	-	990	/	3,2

Einzelkonsole L-DN+ mit Diagonalaussteifung

Bestellbeispiel Einzelkonsole L-DN+

Тур	Kraglänge L		Laststufe
L-DN+	190	/	3,2

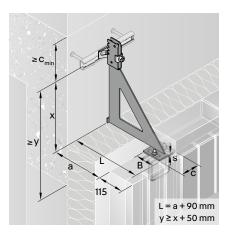
Einbaumaße und Tragfähigkeiten L-F+

Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	Laststufe in kN	F_{Rd} in kN	Winkelabmessungen H _W × B _W × s _W in mm	Einbaumaß x in mm	Einbaumaß y in mm
0 - 20		1,2	1,6	110×110×4	84	
	110	2,1	2,8	110 × 110 × 5	83	
		3,2	4,3	110×110×6	82	V>V 05 mm
30 - 40		1,2	1,6	130×130×4	104	y ≥ x + 25 mm
	130	2,1	2,8	130×130×5	103	
		3,2	4,3	130×130×6	102	

 $^{^{1)}}$ Toleranzen von $\pm 10~\text{mm}$ können ausgeglichen werden

Einbaumaße und Tragfähigkeiten L-DF+ und L-DN+

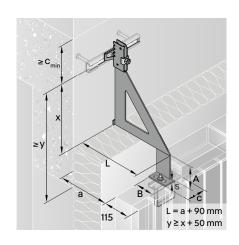
Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	Laststufe in kN	F_{Rd} in kN	Winkelabmessungen H _W × B _W × s _W in mm	Einbaumaß x in mm	Einbaumaß y in mm
30 - 40	130	1,5	2,0	130 × 130 × 3	105	
30 - 40	130	3,2	4,3	130 × 130 × 5	103	
50 - 60	150 —	1,5	2,0	150 × 150 × 3	125	
50-60		3,2	4,3	150×150×5	123	
70 - 80	170 —	1,5	2,0	170×170×3	145	
70-80	170	3,2	4,3	170×170×5	143	
90 - 100	190 —	1,5	2,0	190 × 190 × 3	165	
90-100		3,2	4,3	190 × 190 × 5	163	
110 - 120	210	1,5	2,0	210 × 210 × 3	185	
110-120	210	3,2	4,3	210 × 210 × 5	183	
130 - 140	230 —	1,5	2,0	230 × 230 × 3	205	y ≥ x + 25 mm
130-140		3,2	4,3	230 × 230 × 5	203	y 2 X + 25 111111
150 - 160	250 —	1,5	2,0	250 × 250 × 3	225	
150-160	250	3,2	4,3	250 × 250 × 5	223	
170 - 180	270 —	1,5	2,0	270 × 270 × 3	245	
170-180	270	3,2	4,3	270 × 270 × 5	243	
190 - 200	290 —	1,5	2,0	290 × 290 × 3	265	
190-200	290	3,2	4,3	290 × 290 × 5	263	
210 - 220	310 —	1,5	2,0	310 × 310 × 3	285	
210-220	310	3,2	4,3	310 × 310 × 5	283	
270 240	330	1,5	2,0	330 × 330 × 3	305	
230 - 240	330	3,2	4,3	330 × 330 × 5	303	


 $^{^{1)}}$ Toleranzen von $\pm 10~\mathrm{mm}$ können ausgeglichen werden

Verblenderkonsole JVAeco+ NFT/NAFT

Ausführungsvarianten

Für den Bereich von Öffnungen, die mit Fertigteilstürzen abgefangen werden und über kein seitliches Auflager verfügen, können die Verblenderkonsolen JVAeco+ NFT/NAFT eingesetzt werden:


- Ausführungsvariante NFT für das höhengleiche Konsolauflager (Abfangebene gleich Unterkante Stegblech)
- Ausführungsvariante NAFT mit tiefgesetztem Konsolauflager (Abfangebene gleich Unterkante Stegblech minus Versatzmaß A)

Einzelkonsole JVAeco+ NFT für die Abhängung von Fertigteilstürzen

Bemessung

Bei Berechnung der vorhandenen Belastung sind das Eigengewicht des aufgelagerten Verblendmauerwerkes, das Gewicht des abgehängten Fertigteilsturzes, die DIN EN 1996-2 und die konstruktiven Gegebenheiten zu berücksichtigen.

Einzelkonsole JVAeco+ NAFT mit tiefgesetztem Konsolauflager für die Abhängung von Fertigteilstürzen

Einbaumaß x in mm für Einzelkonsole JVAeco+ NFT/NAFT

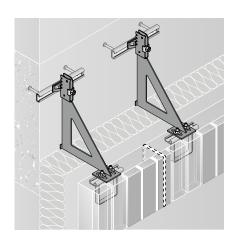
Laststufen mit Bemessungswiderständen

Schalenabstand ¹⁾ a in mm	Kraglänge L in mm	4,5 kN F _{Rd} =6,08 kN	7,0 kN F _{Rd} =9,45 kN	9,0 kN F _{Rd} =12,15 kN	10,5 kN F _{Rd} =14,18 kN	13,5 kN F _{Rd} =18,23 kN
50 - 100	140 - 190	150	200	200	250	250
110 - 120	200 - 210	150	200	225	250	275
130 - 140	220 - 230	175	250	250	300	300
150 - 160	240 - 250	175	250	275	300	325
170 - 180	260 - 270	175	250	300	300	350
190 - 200	280 - 290	200	300	325	350	375
210 - 220	300 - 310	200	300	375	350	425
230 - 240	320 - 330	200	300	400	350	450
250 - 260	340 - 350	250	375	425	400	475
270 - 280	360 - 370	250	375	450	400	500
290 - 300	380 - 390	250	375	475	425	525
Auflagerplatte c x B	x s in mm	80 x 80 x 4	80 x 80 x 5	80 x 80 x 5	80 x 85 x 6	80 x 85 x 6

 $^{^{\}rm 1)}$ Toleranzen von $\pm 10~{\rm mm}$ können ausgeglichen werden

Bestellbeispiel Verblenderkonsole JVAeco+ NAFT

Тур	Kraglänge L	Variante			Laststufe	Versatzmaß
JVAeco+	290	-	NAFT	/	4,5	A = 100


Abhängesystem JFT+

Ausführungsvarianten

Die Fertigteilstürze werden mit werkseitig einbetonierten Fertigteilhaltern JFT+ versehen und diese von den Einzelkonsolen NFT/NAFT abgehängt. Durch die Verstellmöglichkeiten parallel und senkrecht zur Fassade können die Stürze optimal ausgerichtet werden.

Bemessung

Der Tragwerksplaner bzw. der Fertigteilhersteller muss für den Fertigteilsturz den Nachweis der Tragfähigkeit erbringen.

Abhängesystem JFT+ für die Abhängung von Fertigteilstürzen

Fertigteilhalter JFT+

HinweisBauaufsichtlich
zugelassen:
Z-21.4-2014

Befestigungsmittel und Laststufe der Einzelkonsole für Fertigteilstürze

Laststufe in kN	F _{Rd} ²⁾ in kN	Fertigteilhalter JFT+ mit erforderlichen Befestigungsmitteln	Geeignete Laststufe der Einzelkonsole NFT/NAFT in kN
4,5	6,08	JFT 1+ (K28/15) 2x Schraube JD M10x30 (A4-50) 2x U-Scheibe 10,5 und 2x Mutter M10 (A4)	4,5
7,0	9,45	JFT 2+ (K38/17) ¹⁾ 2x Schraube JH M10x30 (A4-50) 2x U-Scheibe 10,5 und 2x Mutter M10 (A4)	7,0 9,0 ³⁾
10,5	14,18	JFT 3+ (K38/17) ¹⁾ 2x Schraube JH M12x30 (A4-50) 2x U-Scheibe 13 und 2x Mutter M12 (A4)	9,0 10,5 13,5 ³⁾

 $^{^{\}rm 1)}$ Zusatzbewehrung laut Zulassung Z-21.4-2014 notwendig

 $^{3)}$ nur mit erhöhter Betonfestigkeitsklasse laut Zulassung möglich

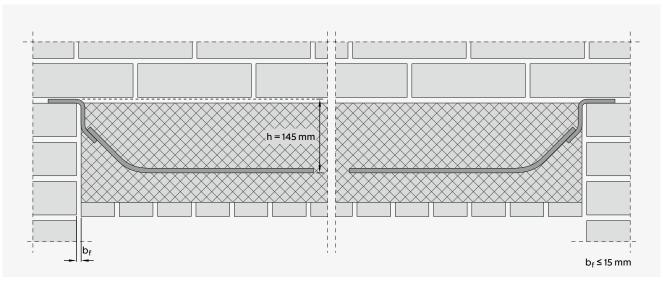
Bestellbeispiel Fertigteilhalter JFT+

Тур	Profilart
JFT 1+	K 28/15

Sonderformen sind auf Anfrage lieferbar

²⁾ bei bewehrtem Normalbeton der Festigkeitsklasse C30/37

Fertigteilsturzwinkel JFTW


Ausführungsvarianten

Die Fertigteilstürze werden mit dem werkseitig einbetonierten Fertigteilsturzwinkel JFTW versehen und auf dem örtlichen Klinkermauerwerk aufgelegt.

Bemessung

Der Tragwerksplaner bzw. der Fertigteilhersteller muss für den Fertigteilsturz den Nachweis der Tragfähigkeit erbringen. Der Nachweis für den Fertigteilsturzwinkel JFTW erfolgt über eine separate Statik. Unsere Experten beraten Sie gerne.

Auflagerung von Fertigteilstürzen für den Normalfall $^{1)}$

 $^{^{1)}}$ Gültig für Fertigteilstürze mit Dicke t = 115 mm und Betonquerschnitt \geq 80 mm

Einbaumaße und Tragfähigkeiten JFTW

				Las	ststufen
	2,6 kN	3,5 kN	4,2 kN	5,5 kN	7,0 kN
F _{Rd} in kN	3,51	4,73	5,67	7,43	9,45
Winkelbreite B in mm	60	60	60	70	75

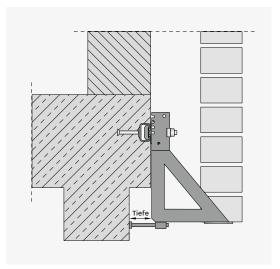
Bestellbeispiel Fertigteilsturzwinkel JFTW

Тур		Laststufe		
JFTW	-	5,5		

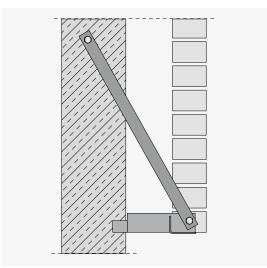
¹⁾ bei dünneren Fertigteilen mit einem Betonquerschnitt ≥ 60 mm ist der Betonstahl aus B500B NR zu wählen

Individuell angepasste Konsolen

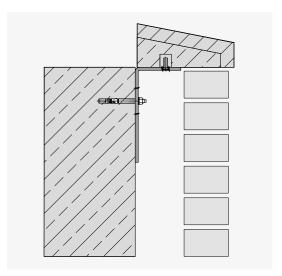
Grenzenlose Kreativität


Die abgebildeten Sonderausführungen stellen nur eine kleine Auswahl der verschiedensten Möglichkeiten und Varianten einer Verblendabfangung dar. Für weitere Abfangsituationen gemäß Ihrer geforderten Einbausituation bieten wir Ihnen individuell angepasste Konsolen. Für eine den schwierigen Rahmenbedingungen angepasste Sonderkonsole sowie für die Planung von Konstruktionen in wirtschaftlich und statisch angepasster Form rufen Sie uns an oder kontaktieren Sie uns unter contact@pohlcon.com – wir beraten Sie gern.

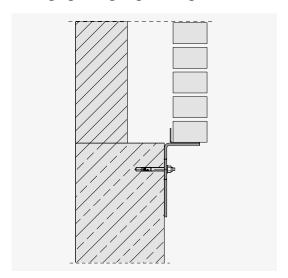
Befestigung an dünnen Decken


Standardkonsole JVAeco+ mit Zusatzbauteil Typ JVAeco+ ZB zur Montage auf dünnen Decken

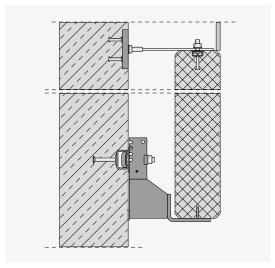
Befestigung bei unterschiedlichen Wanddicken


Sonderkonsole mit Druckschraube zur Tiefenjustierung

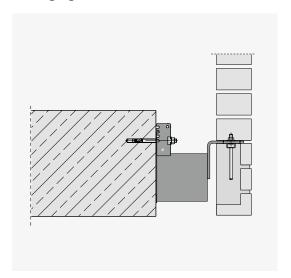
Befestigung im randnahen Bereich


Sonderkonsole mit Zuglasche bei einer Außenecke

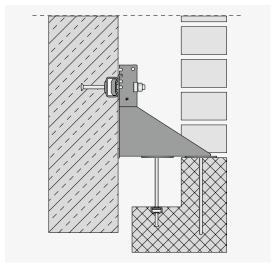
Befestigung von Fensterbänken


Sonderkonsole FB-SX mit gezahntem Langloch und einer horizontalen Lagesicherung

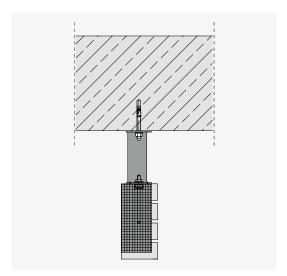
Befestigung bei zu geringem Auflager


Sonderkonsole für Sockelabfangungen als Auflagerverbreiterung

Befestigung von Sichtbetonelementen


Sonderkonsole für Fertigteilelemente und Kipphalterung

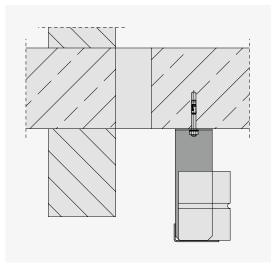
Befestigung von Stürzen


Sonderkonsole mit hochgesetztem Konsolauflager für eine Befestigung hinter dem Fertigteil

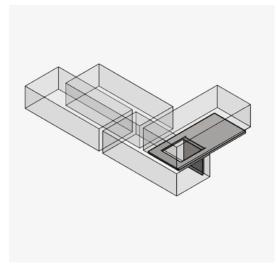
Befestigung von L-Stürzen

Sonderkonsole mit zusätzlicher Auflagerplatte zur rückwärtigen Lagesicherung

Befestigung unterhalb der Decke


Sonderkonsole für Fertigteilelemente

Befestigung bei geringer Aufmauerhöhe


Sonderkonsole JL-UL für Roll- und Grenadierstürze

Befestigung unterhalb der Decke

Sonderkonsole als Winkelkonsole mit sichtbarer Abfangung

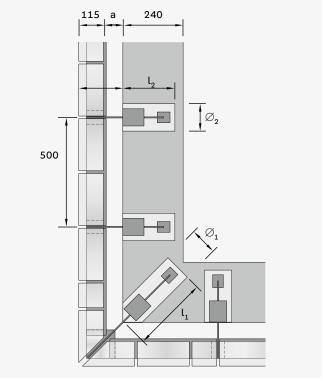
Befestigung von gemauerten Laibungen

Sonderkonsole JLB für Fenster- und Türöffnungen

Einmörtelkonsolen JMK+

Ausführungsvarianten

Wenn bestehende Gebäude nachträglich mit einem Verblendmauerwerk versehen werden sollen, können Einmörtelkonsolen JMK+ eingesetzt werden. Dazu werden ausreichend tiefe Auflagertaschen in das tragende Mauerwerk gebohrt und die Konsolen mit Zementmörtel der Gruppe III (Quellbeton) eingemörtelt. Alternativ können die Löcher auch gestemmt werden.


Die Einmörtelkonsolen JMK+ gibt es in den gleichen Ausführungsvarianten wie die Verblenderkonsolen JVAeco+:

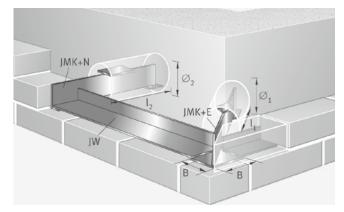
- Ausführungsvarianten N/NA/NU
- Ausführungsvarianten P/PAR
- Ausführungsvarianten F/FAR
- Ausführungsvarianten NFT/NAFT

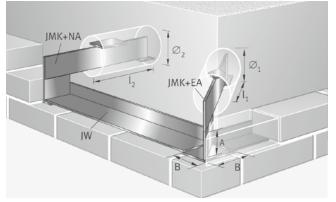
Bild oben: JMK+ P Konsole Montage
Bild unten: JMK+ P Konsole Einbauzustand

Anordnung von Einmörtelkonsolen JMK+ N und JMK+ E in der Draufsicht

Bemessung

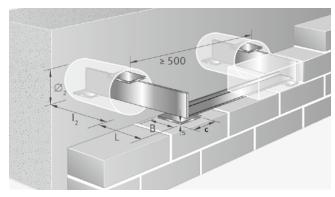
Die Beschaffenheit und Tragfähigkeit des Untergrundes muss im Vorfeld geprüft werden: Die Druckfestigkeit des vorhandenen Mauerwerkes muss mindestens $f_{d}=2,\!1\,\text{N/mm}^2$ und die Wanddicke mindestens 240 mm betragen. Bei geringerer Druckfestigkeit oder geringeren Wanddicken muss eine Sonderlösung erarbeitet werden. Die in das Mauerwerk geleitete Last muss vom Tragwerksplaner berücksichtigt werden. Außenwände bzw. Fundamente müssen in der Lage sein, die zusätzlichen Lasten sicher aufzunehmen.


Zubehör

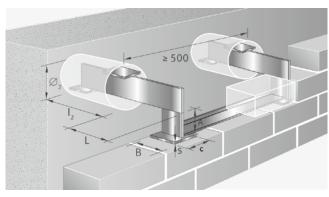

Selbstverständlich können für die Ausführungsvarianten N/NA/NU der Winkel JW (s. S. 10), für die Ausführungsvarianten F/FAR der Rollschichthalter JRH (s. S. 17) sowie für die Ausführungsvarianten NFT/NAFT die Fertigteilhalter JFT+ (s. S. 21) auch für Einmörtelkonsolen verwendet werden.

Hinweise

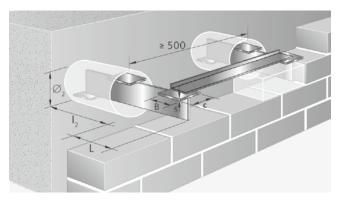
Die Einmörtelkonsolen sind in den Laststufen 3,5 und 7,0 verfügbar, die Bemessungswiderstände betragen also $F_{Rd} = 4,7$ kN bzw. $F_{Rd} = 9,5$ kN. Die maximale Aufmauerhöhe pro Abfangebene beträgt bei einem Abstand der Einmörtelkonsolen von 500 mm im Normalfall (p = 1800 kg/m³, t = 115 mm) maximal 6,75 m.

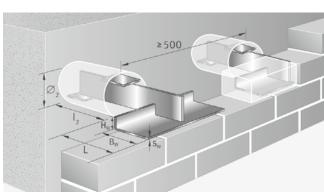

Einmörtelkonsole JMK+ N und Eck-Einmörtelkonsole JMK+ E

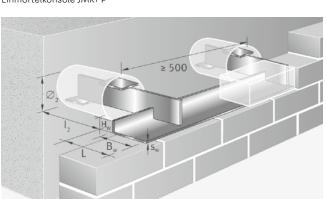
Einmörtelkonsole JMK+ NA und Eck-Einmörtelkonsole JMK+ EA

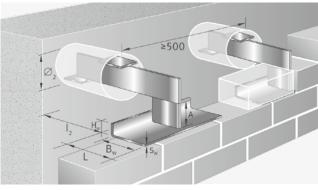

Einbaumaße und Tragfähigkeiten für Eck-Einmörtelkonsolen JMK+ E/EA

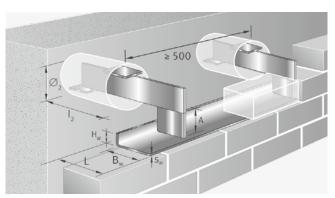
Schalenabstand ¹⁾	Kraglänge	Laststufe	F _{Rd}	Kernbohrung	Länge Kernbohrung
a in mm	L in mm	in kN	in kN	$m{ extstyle 0}_{1}$ in mm	ι ₁
20 ↓ 70	110 ↓ 160	3,5	4,7	140	250
80 ↓ 120	170 ↓ 210	3,5	4,7	150	250
130	220	3,5	4,7	160	250
140 ↓ 200	230 ↓ 290	3,5	4,7	170	250
210 ↓ 220	300 ↓ 310	3,5	4,7	180	250
230 ↓ 240	320 ↓ 330	3,5	4,7	190	250
20 ↓ 80	110 ↓ 170	7,0	9,5	170	280
90 ↓ 120	180 ↓ 210	7,0	9,5	180	280
130	220	7,0	9,5	190	280
140 ↓ 190	230 ↓ 280	7,0	9,5	200	280
200 ↓ 230	290 ↓ 320	7,0	9,5	210	280
240	330	7,0	9,5	220	280

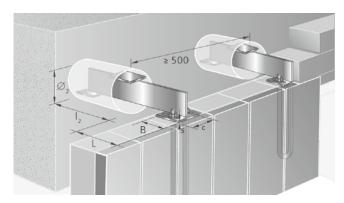

 $^{^{1)}}$ Toleranzen von $\pm 10~\mathrm{mm}$ können ausgeglichen werden

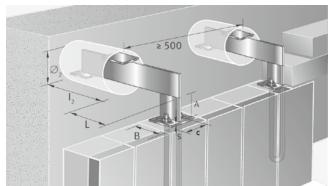

Einmörtelkonsole JMK+ N


Einmörtelkonsole JMK+ NA


Einmörtelkonsole JMK+ NU


Einmörtelkonsole JMK+ P


Einmörtelkonsole JMK+ F



Einmörtelkonsole JMK+ PAR

Einmörtelkonsole JMK+ FAR

Einmörtelkonsole JMK+ NFT

Einmörtelkonsole JMK+ NAFT

Einbaumaße und Tragfähigkeiten für Einmörtelkonsolen JMK+ N/NA/NU/NFT/NAFT/P/PAR/F/FAR

Schalenabstand 1)	Kraglänge	Laststufe	F _{Rd}	Kernbohrung	Länge Kernbohrung
a	L			\emptyset_2	l_2
in mm	in mm	in kN	in kN	in mm	in mm
20	110				
V	\downarrow	3,5	4,7	90	205
70	160				
90	170				
V	\downarrow	3,5	4,7	100	205
100	190				
110	200				
\	\downarrow	3,5	4,7	110	205
200	290				
210	300				
↓	\downarrow	3,5	4,7	120	205
240	330				
20	110				
V	\downarrow	7,0	9,5	130	205
50	140				
60	150				
\downarrow	\downarrow	7,0	9,5	140	205
90	180				
100	190				
V	\downarrow	7,0	9,5	150	205
150	240				
160	250				
\downarrow	\downarrow	7,0	9,5	160	205
240	330				

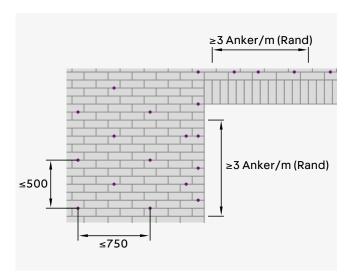
 $^{^{1)}}$ Toleranzen von $\pm\,10\,$ mm können ausgeglichen werden

Bestellbeispiel Einmörtelkonsole JMK+

Тур	Kraglänge L		Variante		Laststufe
JMK+	190	-	N	/	3,5

Zubehör

Luftschichtanker JLA


Das Verblendmauerwerk bildet eine dünne Schale. Es muss gegen Knicken gesichert werden und auch hohe Windkräfte in das tragende Bauteil ableiten können. Diese Aufgaben übernehmen, je nach Material der tragenden Innenwand, Luftschichtanker oder Maueranschlussanker aus Flachstahl.

Mindestanzahl n_{min} von Drahtankern nach Tabelle NA-18 DIN EN 1996-1/NA je m^2 Wandfläche (Windzonen nach DIN EN 1991-1-4/NA)

	Windzonen 1 bis 3, Windzone 4 Binnenland	Windzone 4 Küste der Nord- und Ostsee und Inseln der Ostsee	Windzone 4 Inseln der Nordsee
Gebäudehöhe	Stück/m²	Stück/m²	Stück/m²
h ≤ 10 m	71)	7	8
10 m < h ≤ 18 m	7 ²⁾	8	9
18 m < h ≤ 25 m	7	8 ³⁾	_

Gültigkeit der Tabelle für Schalenabstand a ≤ 150 mm

³⁾ Ist eine Gebäudegrundrisslänge kleiner als h/4: 9 Anker/m²

Anordnung von Luftschichtankern im Wandbereich, an Fugen und Rändern nach DIN EN 1996-1

DIN EN 1996-1-1/NA:2012-05 (Eurocode 6, Auszug)

NDP zu 8.5.2.2 (2) "Zweischalige Wände mit Luftschicht und zweischalige Wände mit Vorsatzschale"

Die Mauerwerksschalen sind durch Anker nach allgemeiner bauaufsichtlicher Zulassung aus nichtrostendem Stahl oder durch Anker nach DIN EN 845-1 aus nichtrostendem Stahl, deren Verwendung in einer allgemeinen bauaufsichtlichen Zulassung geregelt ist, zu verbinden. Für Drahtanker, die in Form und Maßen Bild NA.9 entsprechen, gilt:

- horizontaler Abstand höchstens 750 mm
- lichter Abstand der Mauerwerksschalen höchstens 150 mm
- Durchmesser: 4 mm
- Normalmauermörtel mindestens der Gruppe IIa
- Mindestanzahl: siehe Tabelle NA.18

sofern in der Zulassung für die Drahtanker nichts anderes festgelegt ist.

An allen freien Rändern (von Öffnungen, an Gebäudeecken, entlang von Dehnungsfugen und an den oberen Enden der Außenschalen) sind zusätzlich zu Tabelle NA.18 drei Drahtanker je Meter Randlänge anzuordnen.

Die Ausführungsbestimmungen nach DIN EN 1996-2:2010-12, 3.5.1, sind besonders zu beachten.

Die Drahtanker sind unter Beachtung ihrer statischen Wirksamkeit so auszuführen, dass sie keine Feuchte von der Außen- zur Innenschale leiten können (z. B. Aufschieben einer Kunststoffscheibe, siehe Bild NA.9).

Bei nichtflächiger Verankerung der Außenschale, z. B. linienförmig oder nur in Höhe der Decken, ist ihre Standsicherheit gesondert nachzuweisen.

Bei gekrümmten Mauerwerksschalen sind Art, Anordnung und Anzahl der Anker unter Berücksichtigung der Verformung festzulegen.

NDP zu 8.5.2.3 (2) "Zweischalige Wände ohne Luftschicht"

Zweischalige Wände aus Mauerwerk ohne Luftschicht sind wie zweischalige Wände mit Luftschicht zu verankern. Es gelten alle weiteren Anwendungsbedingungen und Hinweise wie für zweischalige Wände mit Luftschicht nach 8.5.2.2 (2).

¹⁾ In Windzone 1 und Windzone 2 Binnenland: 5 Anker/m²

²⁾ In Windzone 1: 5 Anker/m²

Luftschichtanker verankern die Vormauerschale an Wänden und sichern das Verblendmauerwerk gegen horizontale Kräfte.

- Luftschichtanker Typ JLA W-L: für zweischaliges Mauerwerk mit und ohne Wärmedämmung. Durch seine Wellenform entfällt das Abbiegen in die Vormauerschale.
- Luftschichtanker Typ JLA D-ZV: vormontierter Luftschichtanker zum nachträglichen Verblenden von Mauerwerkswänden aus Vollstein bzw. Betonwänden. Durch seine Wellenform entfällt das Abbiegen in die Vormauerschale.

Luftschichtanker mit ISO-Clip

Auswahl Luftschichtanker JLA

Luftschichtanker JLA	Bezeichnung	Schalenabstand ¹⁾	Anw	endungsbereich ²⁾
Ausführung Edelstahl		a in mm	tragende Innenschale ³⁾	nichttragende Außenschale
Luftschichtanker JLA W-L	W-L-4/225	≤100		
	W-L-4/250	≤125		
	W-L-4/275	≤150	Mauerwerk nach	Mauerwerk nach
	W-L-4/300	≤175	nacn DIN EN 1996-1	DIN EN 1996-2
L	W-L-4/340	≤215	DIN LIN 1990 1	DIN LIN 1990 Z
	W-L-4/400	≤275		
	D-ZV-4/180	≤ 45		
	D-ZV-4/210	≤ 75		
	D-ZV-4/250	≤115		
	D-ZV-4/275	≤140	Normalbeton	Mauerziegel
	D-ZV-4/300	≤165		
Dübelanker JLA D-ZV	D-ZV-4/320	≤185	≥C12/15	nach
	D-ZV-4/350	≤215		DIN EN 771-1
	D-ZV-4/375	≤240	Vollziegel	
	D-ZV-4/400	≤265 ⁴⁾	≥ Mz 12	Kalksandsteine
			nach	nach
L L	D-ZV-5/350	≤215	DIN EN 771-1	DIN EN 771-2
	D-ZV-5/375	≤240	KS-Vollsteine	Vormauersteine
inkl. vormontiertem Dübel	D-ZV-5/400	≤265	≥ KS 12	aus Beton
und Einschlagwerkzeug	D-ZV-5/425	≤290	nach	nach
	D-ZV-5/450	≤315	DIN EN 771-2	DIN EN 771-3
	D-ZV-5/475	≤340		
	D-ZV-5/500	≤360		
	D-ZV-5/525	≤390		
	D-ZV-5/550	≤415 ⁴⁾		

 $^{^{1)}}$ Bis 150 mm Schalenabstand nach DIN EN 1996-2 und über 150 mm bis 400 mm Schalenabstand nach Herstellerzulassung

Material

Die Luftschichtanker JLA werden standardmäßig aus Edelstahl der Korrosionsbeständigkeitsklasse (CRC) III gefertigt. Für den Anwendungsfall in der CRC IV sind die Luftschichtanker ebenfalls mit Zulassung auf Anfrage erhältlich.

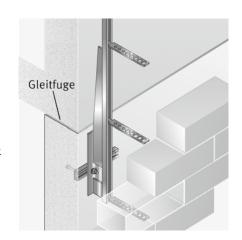
Zubehör

Als Zubehör können Sie die ISO-Clips bestellen, eine praktische Kombination aus Tropfscheibe und Klemmkrallenplatte.

Bestellbeispiel Luftschichtanker JLA

Тур		Ø		Länge L
JLA D-ZV	_	4	/	350

²⁾ Die Angaben sind mit der aktuellen Norm/Zulassung zu überprüfen


 $^{^{\}rm 3)}$ Luftschichtanker für andere Werkstoffe der Innenschale auf Anfrage

 $^{^{4)}}$ Bauaufsichtlich zugelassen bis 250 mm Schalenabstand mit Ø 4 und bis 400mm mit Ø 5

Attika-Verblendanker JAV

Einsatzgebiet

Stahlbeton-Flachdächer verformen sich durch Temperaturbeanspruchung und Lasten. Daher werden Flachdächer aus Stahlbeton teilweise gleitend auf die unteren Wände aufgelagert. Das Verblendmauerwerk ist nicht in der Lage, die Verformungen der Attika schadensfrei aufzunehmen. Verblendmauerwerk, das bis zum oberen Dachrand geführt wird, sollte deshalb nicht im Bereich der Attika verankert werden. Die Attika-Verblendanker JAV sichern das Verblendmauerwerk frei bis zur Oberkante der Attika, indem sie im Ringbalken der unteren Wand verankert werden.

Attika-Verblendanker JAV und Maueranschlussanker JMA

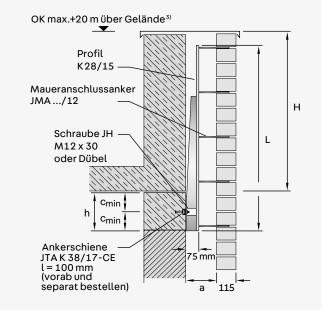
Auswahl Attika-Verblendanker JAV für den Normalfall¹⁾

Attika- Verblendanker Typ	Länge L in mm	Nutzhöhe H in mm	erforderliche Anzahl von Maueranschlussankern	Wandabstand²⁾ a in mm	Maueranschlussanker Typ	
			80 - 110	JMA 85/12		
JAV/75/600	JAV/75/600 600	400 - 550	3	90 - 145	JMA 120/12	
				145 - 200	JMA 180/12	
	JAV/75/850 850 650 - 800	650 - 800 4	80 - 110	JMA 85/12		
JAV/75/850			4	90 - 145	JMA 120/12	
				145 - 200	JMA 180/12	
JAV/75/1100					80 - 110	JMA 85/12
	1100	900 - 1000	5	90 - 145	JMA 120/12	
				145 - 200	JMA 180/12	

¹⁾ Gültig für Verblendmauerwerk Dicke t = 115 mm

Einbauabstände

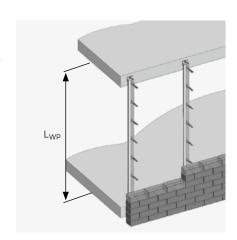
Attika-Verblendanker werden im Abstand von höchstens 750 mm zueinander und von höchstens 375 mm zum Rand oder zur Ecke eingebaut. So wird die Aufnahme von Belastungen aus Windsog und Winddruck sichergestellt.


Zubehör

Die Verbindung zwischen Verblendmauerwerk und Attika-Verblendanker wird durch Maueranschlussanker JMA hergestellt (s. S. 34).

Bestellbeispiel Attika-Verblendanker JAV

JAV	75	/	600
Тур	Konstruktionstiefe		Länge


 $^{^{\}rm 3)}$ Größere Höhen müssen projektbezogen nachgewiesen werden

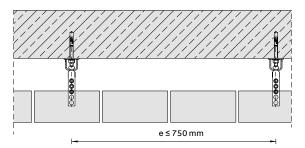
²⁾ Größere Wandabstände auf Anfrage

Windposts JWP

Einsatzgebiet

Windposts JWP und die dazugehörigen Maueranschlussanker JMA dienen der Aussteifung von Verblendmauerwerk und der Aufnahme von Belastungen aus Windsog und Winddruck bei Stahlbetonskelettbauweise. Sie werden an den Riegeln bzw. Deckenstirnseiten aus Stahlbeton befestigt und überbrücken so den Bereich der Wärmedämmung bzw. der Leichtbauwände. Ihre speziellen Anforderungen an Abmessungen, Einwirkungen und Befestigungsarten können wir berücksichtigen. Die Bemessungslast $q_{R,d}$ beträgt 0,75 kN/m. Der Abstand der Windposts e in m ergibt sich damit aus dem Quotienten von $q_{R,d}$ in kN/m und der vorhandenen Windlast $w_{E,d}$ in kN/m² nach DIN EN 1991-1-4NA.

Windpost JWP und Maueranschlussanker

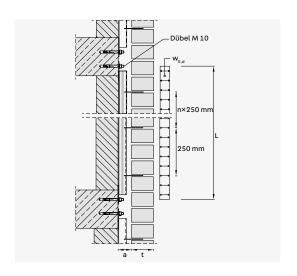

Auswahl Windpost JWP für den Normalfall¹⁾

	Lasteinzugshöhe L in m	Profilabmessung b × h × s in mm	Wandabstand²⁾ a in mm	Mauer- anschlussanker JMA
T (====================================	2,50	70×60×3		
i ((2,75	75 × 65 × 3	70 - 95 95 - 130 135 - 190	85/12
ا ام	3,00	75 × 65 × 4		120/12 180/12
ω	3,25	80×70×4		100/12
	3,50	85×75×4	85 - 110	85/12
	3,75 90×80×		115 - 145	120/12
' h '	4,00	95 × 85 × 4	150 - 205	180/12

¹⁾ Gültig für Verblendmauerwerk Dicke t = 115 mm

Einbauabstände

Windposts werden im Abstand von höchstens 750 mm zueinander und von höchstens 375 mm zum Rand oder zur Ecke eingebaut.


Beispielrechnung für die Ermittlung des Einbauabstandes e für ein Gebäude in WLZ 3 (Binnenland):

 $e = (0.75 \text{ kN/m})/(0.80 \text{ kN/m}^2 \times 1.5) = 0.625 \text{ m}$

Bestellbeispiel Windpost JWP

JWP	75 × 65 × 4	-	3000
Тур	Abmessungen		Länge

Zubehör

Die Verbindung zwischen Verblendmauerwerk und Windposts wird durch Maueranschlussanker JMA hergestellt (s. S. 34). Die erforderliche Anzahl an Maueranschlussankern ergibt sich aus dem Quotienten von L in m und 0,25 m (max. Abstand JMA).

²⁾ Größere Wandabstände auf Anfrage

Maueranschlussanker JMA

Ausführungsvarianten

Die Maueranschlussanker werden in die Maueranschlussschienen eingeführt und in den empfohlenen Abständen in den Lagerfugenmörtel des Mauerwerkes eingedrückt:

- Ausführungsvariante JMA-L₂ in gerader Form
- Ausführungsvariante JMA- $L_2 \times L_3$ -Q in T-Form
- Ausführungsvariante JMA- $L_2 \times L_3$ -QE in L-Form
- Ausführungsvariante JMA-D in extraflacher Form zum Anschluss von großformatigem Mauerwerk

Auswahl Maueranschlussanker JMA für Dickbett

		Schalenabstand			Ab	messungen
Maueranschlussanker, Ausführung fv oder A4	Länge und Serie ²⁾	a in mm	b in mm	t in mm	L ₂ ¹⁾ in mm	L ₃
L ₁ = 20 mm	JMA-L ₂ /12	20 - 40 40 - 80 85 - 140	25	2	85 120 180	-
[00000 b		140 - 160		3	300	
L ₁ = 20 mm	JMA-L ₂ /18	20 - 40 40 - 80 85 - 140 140 - 160	25	3	85 120 180 300	-
L ₁ = 20 mm	JMA-L ₂ ×L ₃ -Q/12	20 - 40 40 - 80 85 - 140	25	2	85 120 180	120 180
		140 - 160		3	300	300
L3	JMA-L ₂ ×L ₃ -Q/18	20 - 40 40 - 80 85 - 140 140 - 160	25	3	85 120 180 300	120 180 300
L ₁ = 20mm	JMA-L ₂ ×L ₃ -QE/12	20 - 40 40 - 80 85 - 140	25	2	85 120 180	120 180 300
		140 - 160		3	300	300
	JMA-L ₂ ×L ₃ -QE/18	20 - 40 40 - 80 85 - 140 140 - 160	25	3	85 120 180 300	120 180 300

 $^{^{11}}$ Die erforderliche Länge L $_2$ ist unter Berücksichtigung der Dicke t der Vormauerschale zu ermitteln (Einbindetiefe ≥ 50 mm).

Auswahl Maueranschlussanker JMA für Dünnbett

Maueranschlussanker, Ausführung A2	Abmes	sungen	Länge
Austrilling A2	b in mm	s in mm	L in mm
-	25	1	125
JMA-L-D/12 (Serie 12)	25	1	185
(00.000	25	1	245

Bestellbeispiel Maueranschlussanker JMA-QE

Тур		Länge $L_2 \times L_3$		Serie		Ausführung
JMA	-	85 × 120	-	QE/12	_	A4

Bestellbeispiel Maueranschlussanker JMA

Тур		Länge		Serie		Ausführung
JMA	-	120	/	12	_	A4

 $^{^{2)}}$ Serie 12 für Profil 25/15, 28/15 und Serie 18 für Profil 38/17

Maueranschlussschienen

Anschluss

Es gibt für den Maueranschlussanker JMA mehrere Anschlussmöglichkeiten, um den dauerhaften und sicheren Anschluss von Mauerwerk an angrenzende Bauteile zu gewährleisten.

- Ankerschienen JTA
- Montageschienen JM, die auch an Holz- und Stahlbauteilen montiert werden können

Materia

Die Maueranschlussschienen und -anker werden für den Einsatz im Fassadenbereich in Edelstahl 1.4571 oder 1.4401 (A4) gefertigt. Im Innenbereich können feuerverzinkte Produkte eingesetzt werden.

Bemessung

Alle Schienen sind in verschiedenen, mit den Lasten abgestimmten Querschnitten erhältlich. Die aufnehmbaren Lasten der in Beton (Qualität ≥ C20/25) einbetonierten Schienen können der folgenden Tabelle entnommen werden.

Anschluss von Verblendmauerwerk an Stahlbetonbauteile

Auswahl Maueranschlussschienen

Maueranschlussschienen		Ausführung	Schienentragfähigkeit F _{Rd} in kN bei Abstand 250 mm	zugehörige Maueranschlussanker
JTA	JTA K 28/15 JM K 28/15 JML K 28/15	fv A2 A4	4,2	$\begin{array}{c} \text{JMA-L}_2/12 \\ \text{JMA-L}_2\times \text{L}_3-\text{Q}/12 \\ \text{JMA-L}_2\times \text{L}_3-\text{QE}/12 \\ \text{JMA-L-D}/12 \end{array}$
JML Second JML	JTA K 38/17 JM K 38/17 JML K 38/17	fv A2 A4	6,3	JMA- $L_2/18$ JMA- $L_2 \times L_3$ - $Q/18$ JMA- $L_2 \times L_3$ - $QE/18$

Gerüstanker JGA+

Einsatzgebiete

Gerüstanker JGA+ sichern Arbeitsgerüste am fertigen Bauwerk, ohne die Verblendschale zu schädigen. Sie werden an der tragenden Konstruktion mit Dübeln befestigt und in der T-Fuge durch die Verblendschale geführt.

- Befestigung von Gerüsten, die freistehend nicht standsicher sind
- Befestigung von Außenwerbung

Ausführungsvarianten

Gerüstanker JGA+ gibt es in zwei Ausführungsvarianten:

- Ausführungsvariante JGA+ Z zum Einleiten von Kräften, die senkrecht auf die Außenwand wirken
- Ausführungsvariante JGA+ Q zum Einleiten von Kräften, die senkrecht und parallel auf die Außenwand wirken

Zubehör

Für die Befestigung liefern wir Ihnen Dübel, die für nachgewiesen ungerissenen oder gerissenen Beton (Qualität ≥ C20/25) geeignet sind. Zur Verbergung des Gerüstankers im Verblendmauerwerk wird eine Kunststoffkappe in Grau mitgeliefert.

Zum Anschluss an den Gerüstanker liefern wir auf Wunsch Gerüstösen M12 (Augendurchmesser 23 mm; Nutzlänge 40 mm), galvanisch verzinkt.

Befestigung des Arbeitsgerüstes am Gerüstanker über eine Gerüstöse

Bemessung

In Deutschland sind die Verankerungen von Gerüsten in zwei DIN-Normen geregelt. In der DIN 4420-3 sind die Verankerungen von Rohr-Kupplungsgerüsten und in der DIN 4426 die Verankerungen von Systemgerüsten geregelt.

Die Tragfähigkeit der Gerüstanker wurde nach den Vorgaben der DIN 4426 bemessen. Diese Norm gibt kein spezielles Raster vor, jedoch darf der maximale vertikale Abstand der Verankerungspunkte 4 m nicht überschreiten. Eine Unterscheidung zwischen bekleideten und unbekleideten Gerüsten entfällt in der DIN 4426. Als Belastung werden F_{\perp} =

 $2,25~kN/m~und~F_{II}=0,75~kN/m~Fassadenlänge~angesetzt.$ Daraus ergeben sich folgende Einwirkungen unter Berücksichtigung des Teilsicherheitsbeiwertes:

$$F_{Ed, \perp} = F_{\perp} \times \gamma_{O} = 2,25 \text{ kN/m} \times 1,5 = 3,38 \text{ kN/m}$$

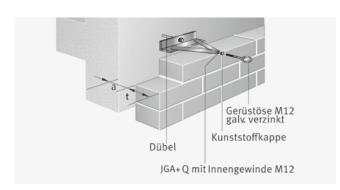
$$F_{Ed, II} = F_{II} \times \gamma_Q = 0.75 \text{ kN/m} \times 1.5 = 1.13 \text{ kN/m}$$

Bei einem üblichen Ständerabstand von 2,5 m resultieren daraus folgende Einwirkungen für die Gerüstanker:

$$F_{Ed. \perp} = 3,38 \text{ kN/m} \times 2,5 \text{ m} = 8,45 \text{ kN}$$

$$F_{Ed.II} = 1,13 \text{ kN/m} \times 2,5 \text{ m} = 2,83 \text{ kN}$$

Bei abweichenden Verankerungsabständen müssen die Einwirkungen auf die Gerüstanker entsprechend der jeweiligen DIN nachgewiesen werden. Gerüste, die nach DIN 4420-3 ausgeführt werden, können ebenfalls mit den Gerüstankern verankert werden, da die zu verankernden Lasten geringer sind (siehe DIN 4420-3, Tabelle 3).

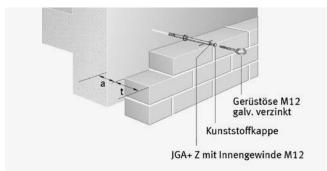

Material

Gerüstanker inkl. Dübel werden aus Edelstahl der Korrosionsbeständigkeitsklasse III hergestellt.

Gerüstanker JGA+ Q

Mit Aufnahme von Horizontalkräften

Gerüstanker JGA+ Q übertragen Zug- und Druckkräfte senkrecht zur Fassade und Horizontalkräfte parallel zur Fassade, die auf das Bauwerk wirken. Die Verankerung erfolgt mit den angegebenen Dübeln in gerissenem bzw. ungerissenem Beton (Qualität ≥ C20/25). Die Tragfähigkeit der Dübel ist immer entsprechend den Einsatzbedingungen nachzuweisen.



Gerüstanker JGA+ Z

Ohne Aufnahme von Horizontalkräften

Gerüstanker JGA+ Z übertragen Zug- und Druckkräfte, die senkrecht zur Fassade auf das Bauwerk wirken.

Die Verankerung erfolgt mit den angegebenen Dübeln in gerissenem bzw. ungerissenem Beton (Qualität ≥ C20/25). Wird bauseitig ein Schubnachweis im Mauerwerk geführt, können bei der Verwendung von Gerüstankern JGA+ Z auch Lasten parallel zur Fassade aufgenommen werden.

Bestellbeispiel Gerüstanker JGA+ Q

JGA+ Q	_	210
Тур		Gesamtausladung

Bestellbeispiel Gerüstanker JGA+ Z

JGA+ Z	_	210
Тур		Gesamtausladung

Auswahl Gerüstanker JGA+ Q

	Bezeich- nung	Schalen- abstand a in mm	Klinker- dicke d in mm	Gesamt- ausladung a+tinmm	dazugeh. Dübel ¹⁾
	JGA+Q-150	40 - 55	115	150	M12
	JGA+Q-170	60 - 75	115	170	M12
	JGA+Q-190	80 - 95	115	190	M12
	JGA+Q-210	100 - 115	115	210	M12
	JGA+Q-230	120 - 135	115	230	M12
	JGA+Q-250	140 - 155	115	250	M12
	JGA+Q-270	160 - 175	115	270	M12
	JGA+Q-290	180 - 195	115	290	M12
	JGA+Q-310	200 - 215	115	310	M12
	JGA+Q-330	220 - 235	115	330	M12
	JGA+Q-350	240 - 255	115	350	M12
	JGA+Q-370	260 - 275	115	370	M12
	JGA+Q-390	280 - 295	115	390	M12
	JGA+Q-410	300-315	115	410	M12

Andere Schalenabstände, Laststufen und Verankerungsgründe auf Anfrage Dübel müssen immer anhand der jeweiligen Einbausituation und den vorhandenen Einwirkungen nachgewiesen werden.

Auswahl Gerüstanker JGA+ Z

Bezeich- nung	Schalen- abstand a in mm	Klinker- dicke d in mm	Gesamt- ausladung a + t in mm	dazugeh. Dübel ²⁾
JGA+Z-110	0 - 15	115	110	M12/10
JGA+Z-130	20 - 35	115	130	M12/30
JGA+Z-150	40 - 55	115	150	M12/10
JGA+Z-170	60 - 75	115	170	M12/30
JGA+Z-190	80 - 95	115	190	M12/10
JGA+Z-210	100 - 115	115	210	M12/30
JGA+Z-230	120 - 135	115	230	M12/10
JGA+Z-250	140 - 155	115	250	M12/30
JGA+Z-270	160 - 175	115	270	M12/10
JGA+Z-290	180 - 195	115	290	M12/30
JGA+Z-310	200 - 215	115	310	M12/10
JGA+Z-330	220 - 235	115	330	M12/30
JGA+Z-350	240 - 255	115	350	M12/10

Andere Schalenabstände, Laststufen und Verankerungsgründe auf Anfrage

Bemessungswiderstände: $F_{Rd,\perp} = \pm 8.6 \text{ kN}$ $F_{Rd,\parallel} = \pm 2.9 \text{ kN}$

Bestellbeispiel Dübel

Тур	Gewinde	_	Klemmdicke	Ausführung

Bemessungswiderstand: $F_{Rd,\perp} = \pm 8.6 \text{ kN}$

Bestellbeispiel Gerüstöse

FI	G	M12	galv. verzinkt (gv)
Ту	/p	Gewinde	Ausführung

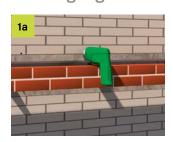
²⁾ Dübel im Lieferumfang enthalten

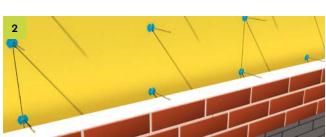
Montagehinweise

Befestigung von Verblenderkonsolen

Ankerschiene fachgerecht einbetonieren und Schaumfüllung entfernen. Schraube waagerecht in den Ankerschienenschlitz einsetzen und um 90° drehen. Der Markierungsschlitz am Schaftende muss senkrecht zur Schienenlängsachse stehen.

Die Verblenderkonsole vertikal justieren durch die im Konsolkopf vorhandenen Zähne und die Schräglochplatte. Horizontales Verstellen mittels Ankerschiene. Mutter aufschrauben und mit Drehmomentschlüssel anziehen.


Feinjustierung durch seitliches Verschieben der Schräglochplatte.


Zur Befestigung an Dübeln, Dübel entsprechend der Zulassung einsetzen. Konsole und Schräglochplatte auf den Dübel setzen, justieren, Mutter aufsetzen und anziehen.

Befestigung von Luftschichtankern

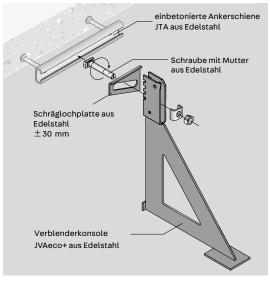
Die Befestigung der Luftschichtanker erfolgt analog der mitgelieferten Montageanleitung.

Bei der Anbringung ist auf die statisch vorgegebene Anzahl an Luftschichtankern pro m^2 zu achten.

Befestigung von Windposts

Die Windposts werden mittels statisch nachgewiesenem Ankerbolzen oder Ankerschiene in der Stahlbetondecke befestigt.

Weitere Informationen zu den Windposts auf Seite 33.


Befestigungsmittel

Befestigungsmittel für Verblenderkonsole JVAeco+, Attika-Verblendanker JAV und Winkelkonsolen L+

	Ankerschiene ¹					ssener und	geeigneter Dübel ¹⁾
Produkt	Last- stufe in kN	F _{Rd} in kN	Тур	Zubehör	Ø Dübel	Klemm- dicke in mm	Zubehör
Verblender- konsolen	2,5 3,5	3,38 4,73	K 38/17-CE	Schraube JH M12 x 70 T (A4-50) Mutter M12 DIN EN 24032 Schräglochplatte Klemmscheibe KS 13	M12	50	Schräglochplatte Klemmscheibe KS 13
JVAeco+ N/NA/NU NFT/NAFT P/PAR	4,5 5,0 7,0 7,5 9,0	6,08 6,75 9,45 10,13 12,15	K 50/30-CE	Schraube JB M12 x 80 T (A4-70) Mutter M12 DIN EN 24032 Schräglochplatte Klemmscheibe KS 13	M12	60 ²⁾	Schräglochplatte Klemmscheibe KS 13
F/FAR E/EA	10,5 13,5	14,18 18,23	K53/34-CE W50+CE	Schraube JB M16 x 85 T (A4-50) Mutter M16 DIN EN 24032 Schräglochplatte Klemmscheibe KS 17	M16	60	Schräglochplatte Klemmscheibe KS 17
Attika- Verblend- anker JAV	-	_	K 38/17-CE	Schraube JH M12 x 30 (A4-50) Mutter M12 DIN EN 24032 Unterlegscheibe 13 EN ISO 7089	M12	10	-
Winkel- konsolen L-F+, L-DF+, L-DN+	1,2 1,5 2,1	1,6 2,0 2,8	K 28/15-CE	Schraube JD M10 x 30 (A4-50) Mutter M10 DIN EN 24032 Unterlegscheibe 10,5 EN ISO 7089	M10	10	_
	3,2	4,3	K 38/17-CE	Schraube JH M10 x 30 (A4-50) Mutter M10 DIN EN 24032 Unterlegscheibe 10,5 EN ISO 7089	M10	10	-

¹⁾ Ankerschienen und Dübel müssen immer anhand der vorhandenen Bauteilgeometrie, der Lage des Verbindungsmittels und der vorhandenen Einwirkungen nachgewiesen werden

 $^{^{2)}}$ Bei der Laststufe 4,5 kN beträgt die Klemmdicke 50 mm

Dübel aus Edelstahl Schräglochplatte aus Edelstahl ±30 mm Verblenderkonsole JVAeco+ aus Edelstahl

Zugelassener und

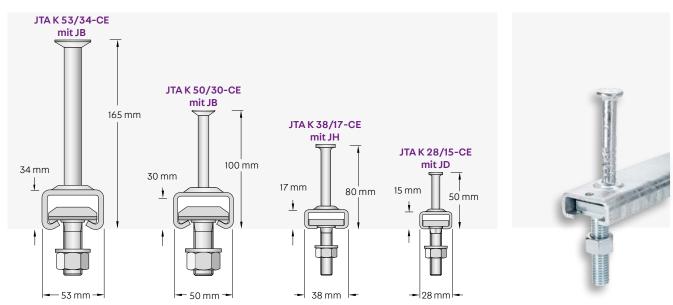
geeigneter

Montage an Ankerschienen

Montage an Dübeln

Ankerschienen JTA-CE

Produktinformationen


Ankerschienen JTA-CE zeichnen sich durch ihre hohe Flexibilität und Qualität aus. Sie besitzen die Europäische Technische Zulassung (ETA-09/0338). Generell stehen Ihnen in unserem Produktprogramm Ankerschienen in verschiedenen Größen und Ausführungen zur Verfügung. An dieser Stelle sind nur die Ankerschienen aufgeführt, die zur Montage von Verblenderkonsolen, Winkelkonsolen und Attikaverblendern

verwendet werden. Die Ankerschienen und die zugehörigen Befestigungsteile werden für den Einsatz im Fassadenbereich aus hochwertigem Edelstahl gefertigt.

Technische Werte

Vor der Montage der Verblenderkonsolen ist zu überprüfen, ob die erforderlichen Randabstände der Ankerschienen eingehalten sind.

Empfohlene Ankerschienen JTA-CE mit Schrauben JB/JH/JD

Lieferformen

Ankerschienen JTA werden als Meterware (Lagerlänge 6 m), als Schienenkurzstücke und als Eckstücke geliefert. Zur Sicherung gegen das Eindringen von Frischbeton sind alle Ankerschienen mit einer Füllung versehen. Die Ankerabstände betragen je nach Schienengröße 200 – 300 mm.

Ankerschienen-Eckstücke (ohne Zulassung)

Profil JTA	Schenkellängen in mm		
V 70 /1 7	125 × 250		
K 38/17	250 × 250		
V F0 /70	150 × 250		
K 50/30	250 × 250		
K 53/34	250 × 250		

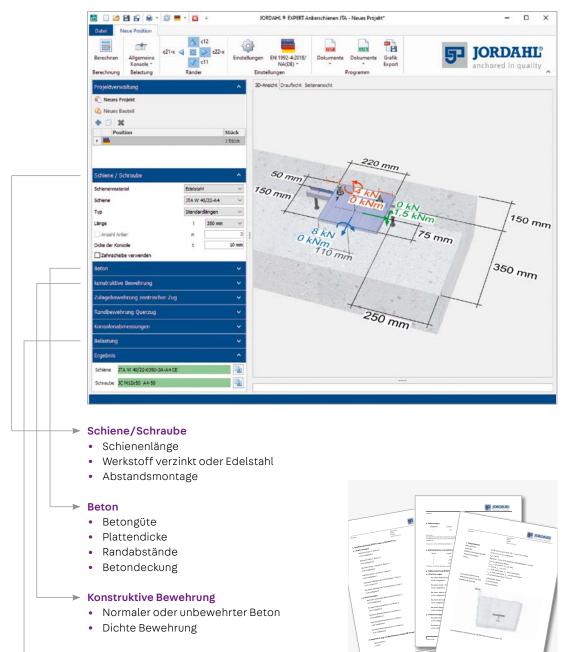
Ankerschiene

Ankerschienen-Eckstück

Bestellbeispiel Ankerschienen-Eckstück

Тур	Profil	Schenkellängen	Ausführung
JTA	K 38/17	125 × 250	A4

Belastung


• Eingabe von Einzel- und Paarlasten in

individuell festgelegten Lastpositionen

EXPERT Software

Unsere EXPERT Software macht Ihnen die Nachweisführung für die Verankerung in Beton mit JTA-CE Ankerschienen denkbar einfach. Die Bemessung ist jeweils an die individuelle Befestigungssituation angepasst und ermöglicht Ihnen dadurch eine technische und wirtschaftliche Optimierung der Verankerung. Nach abgeschlossener Eingabe und Berechnung werden die Ergebnisse der Mehrfachbemessung für alle

verfügbaren Schienengrößen angezeigt. Die Bemessungsergebnisse werden sowohl auf dem Bildschirm als auch in Form eines prüffähigen Ausdrucks ausgegeben. Grundlage des Programms bildet die Europäische Technische Zulassung ETA-09/0338. Die Bemessungssoftware für Ankerschienen ist abgestimmt auf die aktuelle EN 1992-4:2018 und weiteren internationalen Bemessungsverfahren. Kostenloser Download unter www.pohlcon.com.

Ergebnisausdruck

Nachvollziehbarer und übersichtlicher Bemessungsausdruck mit allen prüfrelevanten Angaben

Einführung zweischaliges Mauerwerk

Zweischaliges Mauerwerk vereint die aktuellen Anforderungen an Ökologie, Ökonomie und Ästhetik. Durch seine Konstruktion sorgt es für optimalen Schutz vor Wind, Schnee, Regen oder Wärme genauso wie vor Lärm und Schmutz. Zudem bietet es kreative Gestaltungsmöglichkeiten. Denn ob Ziegel, Kalksand-, Beton- oder Vormauersteine – zweischaliges Mauerwerk gibt es inzwischen in verschiedenen Materialien und Optiken, in fast jedem Stil und für jeden Geschmack. Grundlegend für energieeffizientes Bauen mit Verblendmauerwerk ist aber auch die Wahl des richtigen Abfangsystems.

Mit unseren Systemen für Verblendmauerwerk können Fassaden dauerhaft, ökonomisch und sicher befestigt werden. Verblenderkonsolen nehmen die Lasten des Verblendmauerwerks auf und leiten sie über fachgerecht eingesetzte Ankerschienen oder Dübel in die tragende Wand. Zusammen mit Dämm- und Luftschicht wird so eine zweischalige Außenwand gebildet.

Vorteile

- Flexibel und langlebig
- Kreative Fassadengestaltung, auch bei hohen Bauten
- Keine Veralgung, keine Tauwasserproblematik
- Schwer entflammbar
- Nachhaltig und recycelbar
- Gutes Raumklima
- Schutz vor Lärm, Schmutz und Wettereinflüssen
- Wirtschaftliche Lösung für unterschiedlichste Abfangsituationen
- Kompetente Beratung und umfassender Service durch unsere Experten

1

Verblenderkonsole JVAeco+

Luftschichtanker JLA mit ISO-Clip

3

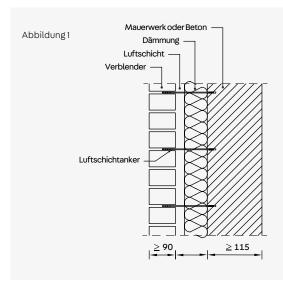
Stahlbeton

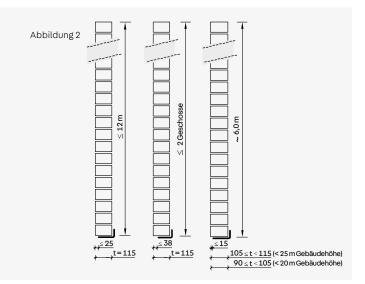
4

Mineralwolledämmung

Verblendmauerwerk

DIN EN 1996-2/NA:2012-01 (Eurocode 6, Auszug) Zweischaliges Mauerwerk


NA.D.1 Allgemeine Bestimmungen für die Ausführung


- (1) Der Abstand zwischen den beiden Mauerwerkwänden in der Regel tragende Innenwand (Innenschale) und nichttragende Außenwand (Außenschale) wird als Schalenzwischenraum bezeichnet. Dieser Schalenzwischenraum kann ohne, ganz oder teilweise mit einer Wärmedämmschicht ausgeführt werden. Die Wärmedämmschicht kann dabei aus einer oder mehreren Lagen Dämmstoff bestehen.
- (2) Wird keine Wärmedämmschicht im Schalenzwischenraum angeordnet, wird diese Konstruktion (oder Wandaufbau) als zweischalige Wand mit Luftschicht bezeichnet. Die Dicke des Schalenzwischenraumes entspricht somit der Dicke der Luftschicht.
- (3) Wird der Schalenzwischenraum ganz oder teilweise mit einer Wärmedämmschicht ausgefüllt, so wird diese Konstruktion als zweischalige Wand mit Wärmedämmung bezeichnet.
- (4) Bei Anordnung einer nichttragenden Außenschale (Verblendschale oder geputzte Vormauerschale) vor einer tragenden Innenschale (Hintermauerschale) ist Folgendes zu beachten:
 - a) Bei der Bemessung ist als Wanddicke nur die Dicke der tragenden Innenschale anzunehmen.
 - b) Die **Dicke der Außenschale** beträgt mindestens **90 mm** (s. Abb. 1). Dünnere Außenschalen sind Bekleidungen, deren Ausführung in DIN 18515 geregelt ist. Die Länge von gemauerten Pfeilern in der Außenschale, die nur Lasten aus der Außenschale zu tragen haben, beträgt min. 240 mm. Die Außenschale muss in der Regel über ihre ganze Länge und vollflächig aufgelagert sein. Bei unterbrochener Auflagerung (z. B. auf Konsolen) müssen in der Abfangebene alle Steine beidseitig aufgelagert sein. c) Die Außenschale muss aus frostwiderstandsfähigen

Mauersteinen oder aus nicht frostwiderstandsfähigen Mauersteinen mit Außenputz, der die Anforderungen nach DIN EN 998-1 in Verbindung mit DIN V 18550 erfüllt, bestehen.

d) Außenschalen von 115 mm Dicke sollten in Höhenabständen von etwa 12 m abgefangen werden (s. Abb. 2). Sie dürfen bis zu 25 mm über ihr Auflager vorstehen. Ist die 115 mm dicke Außenschale **nicht höher als zwei** Geschosse oder wird sie alle zwei Geschosse abgefangen, dann darf sie bis zu 38 mm über ihr Auflager vorstehen. Diese Überstände sind beim Nachweis der Auflagerpressung zu berücksichtigen. Bei nachträglicher Verfugung müssen die Fugen der Sichtflächen mindestens 15 mm tief flankensauber ausgekratzt und anschließend handwerksgerecht ausgefugt werden. e) Außenschalen mit Dicken von t≥105 mm und t<115 mm dürfen nicht höher als 25 m über Gelände geführt werden und sind in **Höhenabständen von etwa 6 m** abzufangen (s. Abb. 2). Bei Gebäuden mit bis zu zwei Vollgeschossen darf ein Giebeldreieck bis 4 m Höhe ohne zusätzliche Abfangung ausgeführt werden. Diese Außenschalen dürfen höchstens 15 mm über ihr Auflager vorstehen. Die Ausführung der Fugen erfolgt in der Regel im Fugenglattstrich. Bei nachträglicher Verfugung müssen die Fugen der Sichtflächen mindestens 15 mm tief flankensauber ausgekratzt und anschließend handwerksgerecht ausgefugt werden.

f) Außenschalen mit Dicken von t≥90 mm und t<105 mm dürfen nicht höher als 20 m über Gelände geführt werden und sind in Höhenabständen von etwa 6 m abzufangen. Bei Gebäuden bis zu zwei Vollgeschossen darf ein Giebeldreieck bis 4 m Höhe ohne zusätzliche Abfangung ausgeführt werden. Die Fugen der Sichtflächen von diesen Verblendschalen müssen im Fugenglattstrich ausgeführt werden. Diese Außenschalen dürfen höchstens 15 mm über ihr Auflager vorstehen. Geprüft nach DIN EN 61537, einschließlich der elektrischen Leitfähigkeit.

Fassadengestaltung und Fugenanordnung

Fassaden mit Verblendmauerwerk bieten dem Planer viele Gestaltungsmöglichkeiten, denn die Auswahlmöglichkeiten hinsichtlich Struktur, Material und Fugenanordnung des Verblendmauerwerks sind vielfältig. Diese Faktoren bestimmen den Charakter eines Gebäudes – aber sie beeinflussen sich auch gegenseitig und wirken sich auf die Konstruktion der tragenden Bauteile aus. Die Fassade sollte daher zu einem frühen Zeitpunkt sorgfältig geplant werden, damit die Ergebnisse in die Tragwerksplanung einfließen können.

Die Fugenanordnung

Horizontale und vertikale Dehnungsfugen gleichen Längenund Volumenänderungen aus und verhindern eine Rissbildung. Zudem bauen die Fugen Spannungsspitzen an den oberen Ecken von Öffnungen ab.

Horizontale Dehnungsfugen liegen bei Verblendmauerwerk in den Abfangebenen. Der Abstand der Abfangebenen richtet sich nach der zulässigen Aufmauerhöhe und den Vorgaben der DIN EN 1996 (Eurocode 6) (s. S. 43).

Die Abstände der vertikalen Dehnungsfugen richten sich nach Himmelsrichtung, der klimatischen Beanspruchung, der Art der Baustoffe und der Farbe des Verblendmauerwerks (siehe rechts).

Je nach Himmelsrichtung dürfen zusammenhängende Mauerscheiben nicht breiter als 6 – 12 m ausgeführt werden. Die Wandscheiben können im Eckbereich durch eine vertikale Fuge unterbrochen oder um die Ecke geführt werden. Dehnungsfugen der tragenden Konstruktion müssen in der Verblenderschale fortgesetzt werden. Zwei Beispiele sind in den folgenden Abbildungen dargestellt.

l_m/2 l_m/2 ≤ 4m

Die Struktur

Jede Fassade wird hauptsächlich durch

- · die Geschosshöhe,
- die Lage, Anzahl und Form der Öffnungen sowie
- Vor- oder Rücksprünge strukturiert.

Bei der Wahl von Verblendmauerwerk können weitere Akzente durch die Anordnung von Roll- oder Grenadierschichten und die gezielte Anordnung von Dehnungsfugen erreicht werden.

DIN EN 1996-2:2012-01 (Eurocode 6, Auszug)

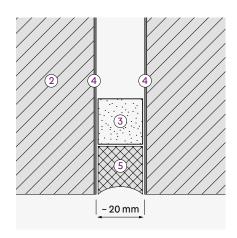
2.3.4.1 Allgemeines

- (1) Um den Auswirkungen von Wärme- und Feuchtedehnung, Kriechen und Durchbiegung und den möglichen Auswirkungen von durch senkrechte oder seitliche Belastung verursachten internen Spannungen Rechnung zu tragen, sollten senkrechte und waagerechte Dehnungsfugen vorgesehen werden, damit das Mauerwerk nicht beschädigt wird.
- (2) Bei der Anordnung der Dehnungsfugen sollte berücksichtigt werden, dass die Tragfähigkeit und Stabilität der Wand erhalten bleiben muss.

2.3.4.2 Abstände zwischen Dehnungsfugen

- (1) Bei der Festlegung der horizontalen Abstände zwischen senkrechten Dehnungsfugen im Mauerwerk sollten die Art des Mauerwerks, der Mauersteine und des Mörtels sowie die besonderen Konstruktionsdetails berücksichtigt werden.
- (2) Der horizontale Abstand zwischen den senkrechten Dehnungsfugen in nicht tragenden Außenwänden sollte nicht größer als l_m sein.

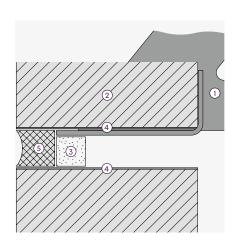
Das Tragwerk


Die Gestaltung der Fassade hat direkte Auswirkungen auf die Konstruktion des Tragwerks. Die Anordnung einer horizontalen Dehnungsfuge bzw. einer Abfangebene im Verblendmauerwerk bedingt die Anordnung eines tragenden Bauteiles dahinter, damit die Kräfte aus der Fassadenabfangung sicher ins Tragwerk eingeleitet werden können.

Mögliche Anordnung von senkrechten und waagerechten Dehnungsfugen

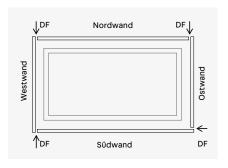
Vertikale Dehnungsfugen

Durchlaufende vertikale Dehnungsfugen neben Öffnungen (horizontale Dehnungsfugen nicht dargestellt)



Vorschlag zur Ausbildung von vertikalen Dehnungsfugen in Verblenderschalen

Horizontale Dehnungsfugen


Durchlaufende horizontale Dehnungsfugen auf der Ebene der Abfangung, bündig zu Oberkante Öffnung (vertikale Dehnungsfugen nicht dargestellt)

Vorschlag zur Ausbildung von horizontalen Dehnungsfugen in Verblenderschalen

Konstruktive Ausbildung von Dehnungsfugen

- 1. Verblenderkonsole
- 2. Verblendmauerwerk
- 3. Geschlossenzelliger Schaumstoff (Kompriband)
- 4. Haftgrundierung (Primer)
- 5. Elastoplastischer Dichtstoff (Fugendichtmasse)

Vorschlag zur Anordnung von vertikalen Dehnungsfugen bei Gebäudeecken in Verblenderschalen

$\label{eq:maximaler} \textbf{Maximaler vertikaler Dehnungsfugenabstand } \textbf{l}_{m} \ \textbf{für} \\ \textbf{verschiedene Arten des Mauerwerks}$

Ziegelmauerwerk	12 m
Kalksandsteinmauerwerk	8 m
Mauerwerk aus Beton (mit Zuschlägen) und Betonwerksteinen	6 m
Porenbetonmauerwerk	6 m
Natursteinmauerwerk	12 m

Aus Erfahrungswerten empfohlene vertikale Dehnungsfugenabstände nach Himmelsrichtung für Ziegel- und Natursteinmauerwerk

Himmelsrichtung	max. Dehnungsfugenabstand $l_{\rm g}$
Nordseite	12 m
Westseite	7 – 8 m
Südseite	8 - 9 m
Ostseite	10 - 12 m

Einführung Verblenderkonsolen

Kreative Gestaltung verbunden mit Nachhaltigkeit: Die Verblenderkonsole JVAeco+ ist das Mittel der Wahl und bietet in jeder Hinsicht Pluspunkte.

Vorteile


- Neue Laststufen mit erhöhten Traglasten (die höchsten am deutschen Markt typengeprüften Bemessungswiderstände) für eine wirtschaftlichere Fassadenlösung
- Umweltproduktdeklaration (EPD) für eine bessere Ökobilanz Ihres Bauvorhabens
- Vertikal verstellbar f
 ür den problemlosen Ausgleich von Bautoleranzen
- Dauerhaft korrosionsbeständig, da aus rostfreiem Edelstahl

CE-gekennzeichnet

Die Verblenderkonsole JVAeco+ ist mit einer CE-Kennzeichnung versehen, da die Konformität mit der DIN EN 845-1 durch eine anerkannte Stelle untersucht und bestätigt wurde.

Hochwertiger Edelstahl

Alle Komponenten der Systeme für Verblendmauerwerk bestehen komplett aus ausgesuchten Edelstählen der DIN EN 10880. Diese erfüllen die hohen Anforderungen der allgemeinen bauaufsichtlichen Zulassung Z-30.3-6 und sind nach DIN EN 1993-1-4 in die Korrosionsbeständigkeitsklasse (CRC) III oder höher eingruppiert. Damit ist eine wartungsfreie Nutzung der Verblenderkonsolen sichergestellt.

Die Verblenderkonsole JVAeco+ besteht wie alle Systeme für Verblendmauerwerk komplett aus Edelstahl.

Vor allem die Verwendung von Lean-Duplex-Edelstahl bietet viele konstruktive, statische und wirtschaftliche Vorteile, denn er macht zusätzliche Korrosionsschutzmaßnahmen überflüssig und ermöglicht eine sortenreine, recycelbare Konstruktion. Das ist umweltbewusst und nachhaltig. Ebenso hat er eine mehr als doppelt so hohe Grundfestigkeit gegenüber den Werkstoffgüten 1.4404 und 1.4571, einen höheren Elastizitätsmodul sowie deutlich niedrigere Legierungsanteile an Nickel und Molybdän.

Bauaufsichtlich geprüft und bestätigt

Alle Systeme für Verblendmauerwerk sind vom Deutschen Institut für Bautechnik (DIBt) zugelassen (Z-21.8-1868) und typengeprüft (TP 12/009), sodass Sie sich jederzeit auf die angegebenen Werte unserer Produkte, wie z. B. die Tragfähigkeit oder den Wärmedurchgangskoeffizienten, verlassen können.

Befestigung

Unsere Verblenderkonsolen werden an Ankerschienen aus Edelstahl befestigt, die in Betonbauteile (Qualität ≥ C20/25) einbetoniert werden. Alternativ können die Verblenderkonsolen mit zugelassenen Dübeln aus Edelstahl in Beton befestigt werden.

Verstellbarkeit

Die Verblenderkonsolen können durch die im Konsolkopf vorhandenen Zähne und eine Schräglochplatte vertikal um ± 30 mm verstellt und perfekt justiert werden. Die Ankerschiene ermöglicht eine horizontale Verschiebbarkeit. So können Bautoleranzen optimal ausgeglichen werden.

Umfangreiche Produktpalette

Unsere Verblenderkonsolen sind in unterschiedlichen Varianten (z.B. für Normalwand, Eck-, Pfeiler- oder Sturzbereich) und Maßen erhältlich. Standardkraglängen von 140 – 390 mm sind lieferbar, andere Kraglängen werden auf Anfrage nachgewiesen. Zahlreiches Zubehör vervollständigt die Produktpalette.

Service

Unsere Experten bieten Ihnen einen umfassenden Service rund um unsere Systeme für Verblendmauerwerk an. Kompetent, schnell und freundlich unterstützen wir Sie bei Bemessungen, statischen Berechnungen, bei der wirtschaftlichen und kostenbewussten Planung sowie bei der Auswahl der geeigneten Verblenderkonsolen und Ankerschienen. Selbstverständlich entwickeln wir für Sie auch individuelle Sonderlösungen. Zusätzlich stellen wir Ihnen leistungsfähige und intuitiv bedienbare Software zur Bemessung Ihrer Anwendungsfälle kostenlos zur Verfügung. Je früher wir in die Planung einbezogen werden, umso wirtschaftlicher die Abfangung.

Energieeffizientes Bauen mit Verblendmauerwerk

Die wärmeschutztechnischen Anforderungen werden seit dem 01.11.2020 über das Gebäudeenergiegesetz (GEG) definiert. Das GEG führt das Energieeinsparungsgesetz (EnEG), die Energieeinsparverordnung (EnEV) und das Erneuerbare-Energien-Wärmegesetz (EEWärmeG) zusammen und gilt für Gebäude, die beheizt oder gekühlt werden. Da der Großteil der zum Heizen aufgewendeten Energie in Form von Transmissionswärmeverlusten über die Außenflächen verloren geht, kommt der Gebäudedämmung eine herausragende Bedeutung zu. Die Wärmedämmung muss immer mehr leisten, um den Jahresenergiebedarf zu senken. Und trotzdem soll die kreative Gestaltungsfreiheit erhalten bleiben. Zweischalige Außenwände für Neubauten erfüllen die heutigen Anforderungen des GEG und der Passivhäuser problemlos.

Neubauprojekt

Bei Sanierungsprojekten stehen vor allem die Erhaltung von Wert und Optik sowie die Energieeffizienz im Vordergrund. Die Sanierung von zweischaligem Verblendmauerwerk bewährt sich vor allem dann, wenn z. B. bei Wohnungen die Unterhaltskosten langfristig niedrig gehalten werden sollen. Dies ist zum Beispiel bei Mietwohnungen der Fall.

Sanierungsprojekt

Als Wärmebrücken werden örtlich begrenzte Bereiche in der wärmeübertragenden Hülle eines Bauwerks bezeichnet, die auch gestörte Bereiche genannt werden. Sie sind hinsichtlich der Wärmedämmung eine Schwachstelle in der Konstruktion, da es hier zu erhöhten Wärmeverlusten aus Transmission kommt. Abfangungen für Verblendmauerwerk stellen zum Beispiel so eine konstruktive Wärmebrücke dar. Den wachsenden Anforderungen an die Dämmung eines Gebäudes und der besonderen Bedeutung von Wärmebrücken werden wir mit der Verblenderkonsole JVAeco+gerecht. Mit einer Aussparung im Stegblech und zusammen mit der Thermomanschette JTM minimiert sie den Wärmestrom, wodurch der Energieverlust deutlich reduziert wird.

Visualisierung von Wärmebrücken mittels Thermografie

Kenntnisse in der Bauphysik helfen Energie zu sparen!

Grundlagen

Erläuterungen

Abhängesysteme für Verblendmauerwerk stellen – wie jede andere Durchdringung der Wärmedämmung – eine konstruktive Wärmebrücke dar. Eine Wärmebrücke bedeutet grundsätzlich Wärme- und damit Energieverlust. Daher sollten sie thermisch optimiert werden, um Verluste zu minimieren. Da das Wärmedämmniveau in der Fläche zunehmend hochwertiger wird, haben Wärmebrücken einen wachsenden Einfluss auf den Energieverlust von Gebäuden.

Das Stegblech der entwickelten Verblenderkonsole JVAeco+ ist mit einer Aussparung ausgeführt, die zusammen mit der Thermomanschette JTM Energieverluste über die Verblenderkonsole minimiert.

Wärmedurchgangswiderstand R_{tot} in m^2 K/W

Der Wärmedurchgangswiderstand ist die Summe aus dem inneren und äußeren Wärmeübergangswiderstand und den Wärmedurchlasswiderständen der einzelnen homogenen Materialschichten entsprechend ihren Dämmeigenschaften, die als Quotient aus Schichtdicke d und Wärmeleitfähigkeit λ definiert werden:

$$R_{tot} = R_{si} + \sum (d_i/\lambda_i) + R_{se}$$

Verblenderkonsole JVAeco+ mit Thermomanschette JTM

Wärmedurchgangskoeffizient U in W/(m²K)

Der auf die ungestörte Fläche bezogene Wärmedurchgangskoeffizient (auch U-Wert genannt) ist der Kehrwert des Wärmedurchgangswiderstandes R_{tot}. Er ist das Maß für den Wärmeverlust eines flächigen Bauteils bei einem Kelvin Temperaturunterschied:

$$U = 1/R_{tot}$$

Korrigierter Wärmedurchgangskoeffizient U_c in $W/(m^2K)$

Der korrigierte Wärmedurchgangskoeffizient ergibt sich aus dem Wärmedurchgangskoeffizienten U unter Berücksichtigung von Korrekturen für Luftspalte in Bauteilen ΔU_g , mechanische Befestigungsteile ΔU_f , die Bauteilschichten durchdringen, (bspw. Verblenderkonsolen und Luftschichtanker) und Umkehrdächer ΔU_r nach DIN EN ISO 6946:

$$U_c = U + \Delta U_g + \Delta U_f + \Delta U_r$$

Transmissionswärmeverlust H_T in W/K

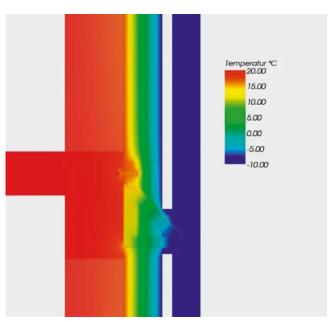
Die über die Außenfläche eines Gebäudes verlorene Energie wird Transmissionswärmeverlust genannt. Er berechnet sich aus dem Produkt der Wärmedurchgangskoeffizienten U und der Außenfläche A sowie einem Aufschlag zur Berücksichtigung der Transmissionswärmeverluste über Wärmebrücken HWB in W/K:

$$H_T = \Sigma (U \times A + H_{WB})$$

Wärmebrückenzuschlag

Wärmebrücken sind Bereiche, bei denen der sonst gleichförmige Wärmedurchgangswiderstand eines Bauteils signifikant verändert ist. Wärmebrücken weisen einen erhöhten Wärmestrom und raumseitig eine reduzierte Oberflächentemperatur auf.

Gebäudeenergiegesetz (GEG)


Die wärmeschutztechnischen Anforderungen an Wohnund Nicht-Wohngebäude werden über das Gebäudeenergiegesetz (GEG) definiert. Das GEG vereinheitlicht das deutsche
Energieeinsparrecht und setzt die europäischen Vorgaben
zur Gesamtenergieeffizienz von Gebäuden um. Es führt das
Energieeinsparungsgesetz (EnEG), die Energieeinsparverordnung (EnEV) und das Erneuerbare-Energien-Wärmegesetz
(EEWärmeG) zusammen und gilt für Gebäude, die beheizt oder
gekühlt werden, einschließlich der dazu nötigen Anlagen und
Einrichtungen wie Heizungs-, Kühl-, Raumluft- und Beleuchtungstechnik sowie die Warmwasserversorgung.

Anforderungen werden über einen zulässigen Jahres-Primärenergiebedarf definiert. Die Berechnung des Jahres-Primärenergiebedarfs erfolgt sowohl für Wohn- als auch für Nicht-Wohngebäude nach DIN V 18599. Bis Ende 2023 darf bei ungekühlten Wohngebäuden weiterhin die Normenkombination DIN V 4108-6 und DIN V 4701-10 angewendet werden. Da der Großteil der zum Heizen aufgewendeten Energie in Form von Transmissionswärmeverlusten H_T über die Außenflächen verlorenen geht, kommt der Wärmedämmung von Gebäuden eine besondere Bedeutung zu. Daher werden nach GEG die Transmissionswärmeverluste von Gebäuden beschränkt.

Der Transmissionswärmeverlust wird neben den aufsummierten Wärmeverlusten aus den Außenflächen ganz wesentlich durch die Wärmeverluste über die Wärmebrücken beeinflusst. Diese werden über einen Wärmebrückenzuschlag ΔU_{WB} berücksichtigt, der entweder pauschal oder detailliert ermittelt wird.

Berechnung und Korrektur vom U-Wert

Die Berechnung von Wärmedurchgangskoeffizienten wird in DIN EN ISO 6946 (Bauteile – Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient – Berechnungsverfahren)

Temperaturverlauf mit Verblenderkonsole JVAeco+ und Thermomanschette

beschrieben und verlangt beim Vorhandensein von Verbindungsmitteln wie Verblenderkonsolen eine Korrektur des U-Werts, wenn deren Einfluss größer als 3 % in Bezug zum ungestörten Wärmedurchgangskoeffizienten ist.

Ermittlung des Wärmebrückenzuschlags H_{WB} in W/K Bei der Ermittlung der Transmissionswärmeverluste über Wärmebrücken wird die gesamte wärmeübertragende Außenfläche A des Gebäudes mit einem Gesamtkorrekturwert ΔU_{WB} multipliziert:

$$H_{WB} = \Delta U_{WB} \times A$$

Ohne besonderen Nachweis der Wärmebrücken ist $\Delta U_{WB} = 0,10~W/(m^2K)$ zu setzen und bei Außenbauteilen mit innenliegender Dämmschicht und einbindender Massivdecke $\Delta U_{WB} = 0,15~W/(m^2K)$. Bei Ausführung der Anschlussdetails nach DIN 4108 Beiblatt 2 können verminderte Zuschläge in Ansatz gebracht werden.

Mit Überprüfung und Einhaltung der Gleichwertigkeit der im Beiblatt 2 dargestellten Anschlussdetails kann, wenn bei allen Anschlüssen die Kriterien nach Kategorie B erfüllt sind, der Wärmebrückenzuschlag zu $\Delta U_{WB} = 0.03 \text{ W/(m}^2\text{K)}$ gesetzt werden. In allen anderen Fällen ist ein Wärmebrückenzuschlag $\Delta U_{WB} = 0.05 \text{ W/(m}^2\text{K})$ anzusetzen, was der Gleichwertigkeit zu Kategorie A entspricht. Das heißt, dass Anschlüsse entweder eindeutig dem konstruktiven Grundprinzip zugeordnet werden können (bildlicher Gleichwertigkeitsnachweis) oder einen geringeren bzw. gleichen längenbezogenen Wärmedurchgangskoeffizienten Ψ aufweisen (rechnerischer Gleichwertigkeitsnachweis). Beim bildlichen Gleichwertigkeitsnachweis müssen die Anschlüsse die beschriebenen Bauteilabmessungen und Baustoffeigenschaften bzw. bei abweichenden Wärmeleitfähigkeiten mindestens den identischen Wärmedurchlasswiderstand der jeweiligen Schicht aufweisen.

Die rechnerische Gleichwertigkeit ist unter Verwendung der im Beiblatt 2 angegebenen Randbedingungen nachzuweisen. Ebenso können Werte für den längenbezogenen Wärmedurchgangskoeffizienten Ψ Veröffentlichungen, Wärmebrückenkatalogen oder Herstellernachweisen entnommen werden, die auf den beschriebenen Randbedingungen basieren.

Detaillierte Ermittlung der Wärmebrückenzuschläge

 H_{WB} in W/K und ΔU_{WB} in W/(m²K)

Bei der detaillierten Ermittlung der Transmissionswärmeverluste über Wärmebrücken werden die linienförmigen Wärmebrücken individuell als Produkt aus deren Länge l_i und den längenbezogenen Wärmedurchgangskoeffizienten Ψ_i berechnet:

$$H_{WB} = \sum (\Psi_i \times l_i)$$

Werden die linienbezogenen Wärmedurchgangskoeffizienten Ψ_i auf die Außenfläche A bezogen, erhält man einen detailliert ermittelten projektbezogenen Wärmebrückenzuschlag ΔU_{WB} :

$$\Delta U_{WB} = \sum (\Psi_i \times l_i)/A$$

Pauschale Gesamtkorrekturwerte

DIN 18599-2 gibt die in der folgenden Tabelle vertafelten Wärmebrückenzuschläge ΔU_{WB} an, die von der Ausführungsart der Planung abhängen.

Ausführungsart Planung	ΔU_{WB} in W/(m ² K)
Ausführung der Anschlüsse gemäß DIN 4108 Beiblatt 2, Kategorie B	0,03
Ausführung der Anschlüsse gemäß DIN 4108 Beiblatt 2, Kategorie A	0,05
Anschlüsse ohne weiteren Nachweis	0,10
Mehr als 50 % der Außenwand sind mit einer innenliegenden Dämmschicht und einbindender Massivdecke versehen	0,15

Kann keine Gleichwertigkeit zu einem oder mehreren im Beiblatt dargestellten Konstruktionsprinzipien bzw. zu einem oder mehreren Konstruktionsprinzipien der Kategorie A bzw. B hergestellt werden, kann der pauschale Wärmebrückenzuschlag ΔU_{WB} in $W/(m^2K)$ über die Differenz des zum jeweiligen im Beiblatt dargestellten Ψ -Referenzwertes der Kategorie A und B wie folgt korrigiert werden:

$$\Delta U_{WB} = \sum ((\Delta \Psi_i \times l_i)/A) + 0.03$$

$$bzw.$$

$$\Delta U_{WB} = \sum ((\Delta \Psi_i \times l_i)/A) + 0.05$$

Die vorbeschriebene Korrektur darf jedoch nur verwendet werden, wenn der projektbezogene Ψ -Wert größer ist als der Referenzwert des entsprechenden Anschlussdetails. Werden Wärmebrücken berücksichtigt, die nicht im Beiblatt 2 enthalten sind, erfolgt die Korrektur über den Ψ -Wert der betreffenden Anschlusssituation mit seiner jeweiligen Länge:

$$\Delta U_{WB} = \sum ((\Psi_i \times l_i)/A) + 0.03$$

$$bzw.$$

$$\Delta U_{WB} = \sum ((\Psi_i \times l_i)/A) + 0.05$$

Detaillierte Gesamtkorrekturwerte

Um eine Kompensation höherer Wärmebrückenzuschläge über die Gebäudehülle zu vermeiden, ist die Führung eines detaillierten Wärmebrückennachweises sinnvoll. So kann eine niedrigere Gesamtkorrektur zur Berücksichtigung der Wärmebrücken ermittelt werden. Je nach Bauart des Gebäudes sind ΔU_{WB} -Werte von bis zu 0,01 W/(m²K) möglich.

Bestimmung von χ-Werten

Die Bestimmung der χ -Werte kann nicht mit vertretbarem Aufwand durchgeführt werden; numerische Simulationen sind unabdingbar. Hierbei wird der Wandaufbau zusammen mit den Wärmebrücken in Modellen nachgebildet und der Wärmestrom simuliert. Durch Zusammenfassung des flächig verteilten Wärmeflusses können die χ -Werte mit Hilfe der U-Werte ermittelt werden. Hierbei bedeuten die ψ -Werte ein Äquivalent für linienförmige und χ -Werte ein Äquivalent für punktförmige Wärmebrücken.

χ-Werte für Produkte von PohlCon

Um die detaillierte energetische Berücksichtigung des Systems für Verblendmauerwerk zu ermöglichen, wurden die X-Werte ermittelt. Hierbei wurden unterschiedliche Dämmstoffqualitäten untersucht und die Schalenabstände a von 140 mm bis 300 mm variiert, sodass übliche Dämmstoffschichtdicken berücksichtigt werden.

Bei den Simulationen wurde festgestellt, dass die Dämmstoffqualität nur bei kerngedämmten Konstruktionen einen signifikanten Einfluss auf die χ-Werte hat. Bei hinterlüfteten Konstruktionen kann dies vernachlässigt werden. Während für kerngedämmte Konstruktionen nur ein sogenannter Fingerspalt von bis zu 20 mm zulässig ist, darf bei hinterlüfteten Konstruktionen die Luftschichtdicke bis zu 60 mm betragen.

Wir empfehlen 40 mm als maximale Dicke der Luftschicht, da trotz Hinterlüftung der Energieverlust niedrig ist. Die χ -Werte sind in der bauaufsichtlichen Zulassung Z-21.8-1868 der Verblenderkonsole JVAeco+ in einer Tabelle anschaulich dargestellt. Bei unserer Bemessungssoftware werden diese exakten Werte verwendet, um ein optimales Ergebnis zu erzielen. Auch

für Dauergerüstanker JGA+ und Luftschichtanker JLA wurden der Wärmestrom simuliert und χ -Werte ermittelt.

Kerngedämmt und hinterlüftet

Bei kerngedämmten Verblenderfassaden wird zwischen der Dämmung und dem Verblendmauerwerk die Luftschicht nur einen Fingerspalt breit, bis maximal 20 mm, ausgeführt. Dies erleichtert lediglich das Mauern.

Von hinterlüfteten Verblenderfassaden spricht man, wenn der Zwischenraum zwischen 20 mm und 60 mm beträgt und zur Entfeuchtung dient.

Einbau im Bereich von Decken und Stürzen

Verblendmauerwerkskonsolen werden an das Stahlbetontragwerk des Gebäudes befestigt. Die Befestigungspunkte können dabei im Bereich von einbindenden Decken oder von Stürzen liegen.

χ_{max}-Werte für Produkte von PohlCon

Die folgende Tabelle gibt χ_{max} -Werte an, die die genauen χ -Werte der Zulassung Z-21.8-1868 für die Verblenderkonsole JVAeco+ zusammenfassen. Hierzu wurden wegen der heutzutage gebräuchlichen Dämmstoffdicke nur Kraglängen berücksichtigt, die nicht kleiner als l=250 mm sind. Die Tabelle gibt außerdem die χ_{max} -Werte für Dauergerüstanker JGA+ an.

Die Tabelle verdeutlicht, dass der χ_{max} -Wert der Verblenderkonsolen JVAeco+ höchstens 0,033 W/K beträgt, unabhängig von Einbausituation und Kraglänge, Ausführungstyp und Ausführungsvariante. Der Wert gilt sowohl für kerngedämmte als auch hinterlüftete Konstruktionen, wenn die Thermomanschette JTM verwendet wird. Bei dem

Dauergerüstanker JGA+ beträgt der χ_{max} -Wert 0,025 W/K, und Luftschichtanker JLA können mit dem χ -Wert 0,001 W/K berücksichtigt werden.

Thermomanschette

Um die Wärmeabgabe im Bereich der Hinterlüftung zu reduzieren, muss die Verblenderkonsole in diesem Bereich gesondert mit einer Isolierung – der Thermomanschette JTM – ummantelt werden.

Dauergerüstanker

Um die Fassade auch nach Fertigstellung des Gebäudes vorschriftsmäßig einzurüsten, werden Dauergerüstanker benötigt. Dauergerüstanker JGA+ ermöglichen die sichere Einleitung von Horizontalkräften in das hinter dem Verblendmauerwerk gelegene Tragwerk.

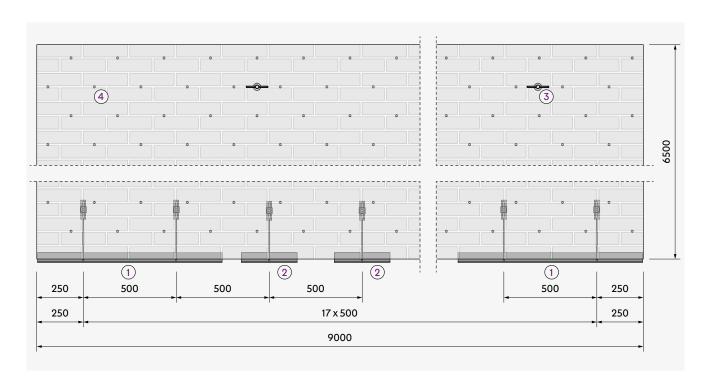
Luftschichtanker

Zur Weiterleitung von auf das Verblendmauerwerk wirkenden Winddruck- und Windsogkräften werden Luftschichtanker JLA eingebaut.

Dauergerüstanker JGA+

Luftschichtanker JLA

Xmax-Werte der Verblenderkonsolen JVAeco+ mit Thermomanschette JTM und Dauergerüstanker JGA+


		kerngedämmt				hinterlüftet	
	0 mm < h _{LS} ≤ 20 mm		20 m	nm < h _{LS} ≤ 40 mm	40 mm < h _{LS} ≤ 60 mm		
Einbau im Bereich von	JVAeco+	JGA+	JVAeco+ mit JTM ¹⁾	JGA+	JVAeco+ mit JTM ¹⁾	JGA+	
Decke	0,025 W/K	0.000.04/4/	0,027 W/K	0,023 W/K	0.00714/1/	0,028 W/K	0.005.04/4
Sturz	0,031 W/K	0,020 W/K	0,031 W/K		0,033 W/K	0,025 W/K	

 $^{^{\}rm 1)}$ Ohne Verwendung der Thermomanschette JTM verschlechtern sich die Werte um etwa 10 %

Beispielbetrachtung

Außenwand

Mit dem folgenden Beispiel werden die Bemessungsschritte für die konstruktive Planung einer Außenwand erläutert. Hierbei werden auch wärmeschutztechnische Aspekte berücksichtigt. Die Wandansicht mit den Verblenderkonsolen, Dauergerüstankern und Luftschichtankern ist in der folgenden Zeichnung dargestellt.

Einbauteile (punktuelle Wärmebrücken)

1	Verblenderkonsole JVAeco+ 250 - F/7,0 und Thermomanschette JTM 40
2	Verblenderkonsole JVAeco+ 250 - P/7,0 und Thermomanschette JTM 40
3	Dauergerüstanker JGA+ 270, 1 Stück/10 m²
4	Luftschichtanker JLA, 8 Stück/m²

Bemessung der Konsolen

Jede Verblenderkonsole wird von einem Wandstreifen der Breite B und der Höhe H belastet, sodass sich folgende Bemessungslast ergibt:

$$t = 0,115 \text{ m}$$
 $b = 0,50 \text{ m}$ $H = 3,25 \text{ m}$ $\rho = 1,35$ $\rho = 1800 \text{ kg/m}^3$

$$F_{Ed} = \rho \times 0.01 \, \text{kN} / \text{kg} \times \text{t} \times \text{b} \times \text{H} \times \gamma_{G}$$

$$F_{Ed}$$
 = 1800 kg/m³ × 0,01 kN/kg × 0,115 m × 0,5 m × 6,5 m × 1,35 = 9,08 kN

Der Bemessungswiderstand der gewählten Verblenderkonsole JVAeco+ 250 – F und JVAeco+ 250 – P (Laststufe 7,0) beträgt:

$$F_{Rd} = 9,45 \text{ kN}$$

Nachweis:

$$F_{Ed} / F_{Rd} = 9,08 \, kN / 9,45 \, kN = 0,96 \le 1$$

Im Folgenden wird die erforderliche Anzahl der anderen Einbauteile bestimmt.

Ermittlung der erforderlichen Anzahl von Konsolen

Da alle Konsolen im Standardabstand von 0,5 m geplant werden, ergibt sich die erforderliche Anzahl von Konsolen wie folgt:

 $n = 9 \text{ m} \times 1 \text{ Stück} / 0.5 \text{ m} = 18 \text{ Stück}$

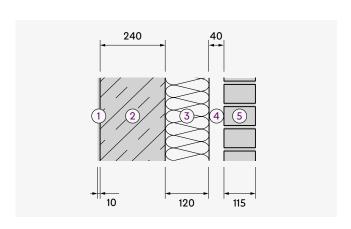
Ermittlung der erforderlichen Anzahl von Dauergerüstankern

Üblicherweise wird ein Dauergerüstanker je 10 m² Wandfläche eingebaut:

 $n = (6.5 \text{ m} \times 9 \text{ m}) \times 1 \text{ Stück} / 10 \text{ m}^2 = 6 \text{ Stück}$

Ermittlung der erforderlichen Anzahl von Luftschichtankern

Unter der Annahme, dass sich das Gebäude in der Windzone 4 befindet, sind je m² mindestens 8 Luftschichtanker erforderlich:


 $n = (6,5 \text{ m} \times 9 \text{ m}) \times 8 \text{ Stück/m}^2 = 468 \text{ Stück}$

Berechnung des Wärmdurchgangskoeffizienten U der ungestörten Fläche

In der folgenden Tabelle werden für den unten dargestellten Wandaufbau der Wärmedurchgangswiderstand R_{tot} und der Wärmedurchgangskoeffizient U auf Basis der in der DIN V 4108-4 und DIN EN 12524 angegebenen Werte der Dichte ρ und Wärmeleitfähigkeiten λ berechnet.

Schichten

i	Material
1	Gipsputz
2	Beton ($\rho_{1\%bew} = 2300 \text{ kg / m}^3$)
3	Wärmedämmung WLG 035
4	Luftschicht (ruhend)
5	Verblendmauerwerk ($\rho = 1800 \text{ kg} / \text{m}^3$)

Berechnung U-Wert

	Wand- aufbau Schicht	Dicke	Wärmeleit- fähigkeit	Wärmeüber- gangs- und Wärmedurchlass-
	i	d in m	λ in W/(mK)	widerstände in m²K/W
R _{si}	Wärmeüb	ergangsw	riderstand innen	0,13
	1	0,01	0,7	0,014
	2	0,24	2,3	0,104
$R_i = h_i/\lambda_i$	3	0,12	0,035	3,43
	4	-	-	0,16
	5	0,115	0,81	0,142
R _{se}	Wärmeübe	ergangsw	iderstand außen	0,04
R _{tot}	Summe de der Wärm		4,02	
U	Wärmedu (1 / R _{tot}) ir	0 0	0,25	

Berechnung des Wärmedurchgangskoeffizienten U_c der gestörten Fläche

Die Berücksichtigung von zusätzlichen Wärmeverlusten über Befestigungselemente bei der Ermittlung des U-Wertes erfolgt nach DIN EN ISO 6946 anhand einer Korrektur für mechanische Befestigungselemente ΔU_f .

Bei der Berechnung für den korrigierten Wärmedurchgangskoeffizienten für die Verblendfassade wird davon ausgegangen, dass es keine Korrekturen für Luftspalte und Umkehrdächer gibt. Falls diese dennoch vorhanden sind, müssen ΔU_g und ΔU_r ebenfalls berücksichtigt werden!

Die Berücksichtigung der Korrektur bei der Berechnung des Wärmedurchgangskoeffizienten $\rm U_{\rm C}$ erfolgt durch Addition auf den Wärmedurchgangskoeffizienten U. Ist die sich ergebende Korrektur geringer als 3 % des Wärmedurchgangskoeffizienten U, muss diese nicht berücksichtigt werden.

Die χ -Werte für die Verblenderkonsolen sind in der Zulassung Z-21.8-1868 enthalten. Die χ -Werte für Gerüstanker und Luftschichtanker wurden von einem Gutachten bestätigt.

$\textbf{Berechnung}\,\Delta\textbf{U}_{\textbf{f}}\textbf{-}\textbf{Wert}$

mechanische Befestigungs- elemente		Punktbez. Wärmed koeffizient	Anzahl	Bauteil- fläche	Korrektur- werte	
		X	n	Α	χ×n/A	
		in W/K	Stück	in m²	in W/(m²K)	
1 + 2	JVAeco+ 250 und JTM 40	0,026 gemäß Zulassung	18	58,5	0,008	
3	JGA+ 270	0,023	6	58,5	0,002	
4	JLA 250	0,001	468	58,5	0,008	
Korrekturwert ΔU_{f} 0,						

Es folgt die Überprüfung, ob die Korrektur berücksichtigt werden muss:

$$\Delta U_f / U = 0.018 / 0.25 = 7.2 \% > 3 \%$$

Die Korrektur muss berücksichtigt werden!

Der Wärmedurchgangskoeffizient U_{c} errechnet sich somit wie folgt:

$$U_C = U + \Delta U_f = 0.25 + 0.018 = 0.268 \text{ W/(m}^2\text{K)}$$

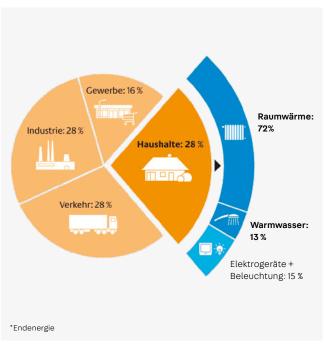
Reduzierung des Energieverlustes mit der Verblenderkonsole JVAeco+

Im Durchschnitt werden je Konsole 3 m² Verblendmauerwerk abgefangen, auch wenn die tatsächliche Tragfähigkeit höher ist (z.B. JVAeco+13,5 kN trägt 6,5 m² Verblendmauerwerk). Mit den vereinfachenden X_{max}-Werten für die Verblenderkonsole JVAeco+ und den Dauergerüstanker JGA+ sowie den gleichen realistischen Annahmen für die Anzahl von Dauergerüst- und Luftschichtankern wie zuvor ergibt sich für den korrigierten U-Wert:

Verblenderkonsole JVAeco+: 1Stück/3 m^2 , X = 0,033 W/KDauergerüstanker JGA+: 1Stück/10 m^2 , X = 0,025 W/KLuftschichtanker JLA: 8Stück/m^2 , X = 0,001 W/K

 \rightarrow 1 / 3 × 0,033 + 1 / 10 × 0,025 + 8 × 0,001 = ΔU_f = 0,02 W/(m²K)

Müssen Verblenderkonsolen, Dauergerüst- und Luftschichtanker berücksichtigt werden?


Eine Vernachlässigung von diesen mechanischen Befestigungselementen ist nur möglich, wenn die sich ergebende Korrektur für den Wärmedurchgangskoeffizienten ΔU_f geringer als 3 % des Wärmedurchgangskoeffizienten U ist!

Die Korrektur erfolgt dann ausschließlich für den Wärmedurchgangskoeffizienten. Alle anderen Wärmebrücken bleiben davon unberührt und werden über den pauschalen Wärmebrückenzuschlag ΔU_{WB} erfasst.

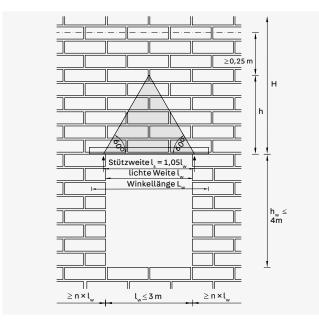
Energieeffizienz

Der steigende Energieverbrauch wächst in den letzten Jahren exponentiell zur Weltbevölkerung. Zwar spielt sich diese Problematik hauptsächlich außerhalb der führenden Industrienationen ab, jedoch müssen gerade die hochtechnisierten und entwickelten Länder mit gutem Beispiel vorangehen und ihr Know-how einsetzen, um die Energieeffizienz zu verbessern.

Rund ein Viertel der in Deutschland verbrauchten Energie* entfällt auf private Haushalte. Über zwei Drittel des Energieverbrauchs wird hierbei zu Heizzwecken eingesetzt.

Aufteilung des Energieverbrauchs in Deutschland (dena/Energiedaten BMWi mit Bezugsjahr 2010, Stand;12/2011)

Einführung Anwendungstechnik


Berücksichtigung von Öffnungen

Bemessung von Abfangungen über Wandöffnungen mit Gewölbewirkung

Abfangwinkel über Wandöffnungen können mit reduzierten Wandlasten bemessen werden, da sich oberhalb der Abfangebene eine Gewölbewirkung aufbaut. In diesem Fall kann das Gewölbe vereinfacht als gleichseitiges Dreieck über dem Träger angesetzt werden. Voraussetzung dafür ist, dass der Gewölbeschub aufgenommen werden kann. Deshalb muss die Aufmauerhöhe H frei von Öffnungen und genügend groß sein (H \geq h + 0,25 m). Außerdem muss zu benachbarten Öffnungen genügend Abstand eingehalten werden, was mit der nachfolgenden Tabelle überprüft werden kann.

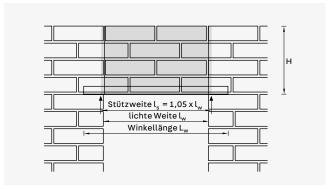
Voraussetzung für den Ansatz der Gewölbewirkung

h _w /l _w	0,85	1,2	1,6	2,0	2,5	3,0	3,6
n	0,4	0,5	0,6	0,7	0,8	0,9	1,0

Bemessung mit Gewölbewirkung

Aufmauerhöhe H in m: $H \ge h + 0.25 \text{ m}$

Belastungshöhe h in m: $h = \sin 60^{\circ} \times l_s = 0.866 \text{ m} \times l_s$


Belastung q_{Ed} in kN/m

$q_{Ed} = \rho \times 0.01 \, kN / kg \times H \times t \times \gamma_G$

maximales Moment M_{Ed} in kNm: $M_{Ed} = q_{Ed} \times l_s^2/12$ maximale Querkraft am Auflager V_{Ed} in kN: $V_{Ed} = q_{Ed} \times l_s/4$ Winkellänge L_w in m: $L_w = l_w + 2 \times 0.095$ m

Bemessung von Abfangungen über Wandöffnungen ohne Gewölbewirkung

Ist die Aufmauerhöhe zu klein oder sind benachbarte Öffnungen zu nah, bleibt die Gewölbewirkung unberücksichtigt und die Belastung wird als Gleichstreckenlast über dem Träger angesetzt.

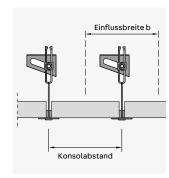
Bemessung ohne Gewölbewirkung

Belastungshöhe = Aufmauerhöhe Hinm

Belastung q_{Ed} in kN/m

$$q_{Ed} = \rho \times 0.01 \text{ kN/kg} \times H \times t \times \gamma_G$$

 $\begin{array}{ll} \text{maximales Moment M}_{\text{Ed}} \text{ in kNm:} & M_{\text{Ed}} = q_{\text{Ed}} \times {l_{\text{S}}}^2/8 \\ \text{maximale Querkraft am Auflager V}_{\text{Ed}} \text{ in kN:} & V_{\text{Ed}} = q_{\text{Ed}} \times {l_{\text{S}}}/2 \\ \text{Winkellänge L}_{\text{W}} \text{ in m:} & L_{\text{W}} = {l_{\text{W}}} + 2 \times 0,095 \, \text{m} \end{array}$


Bemessung von Auflagerwinkeln

Die Wahl des Auflagerwinkels erfolgt nach Tabellen oder nach einem statischen Nachweis. Dabei ist das Biegemoment $M_{\rm Ed}$ und die Einhaltung der zulässigen Durchbiegung von beispielsweise $l_{\rm s}/300$ für den Auflagerwinkel maßgebend. Die Auflagerkraft $V_{\rm Ed}$ ist für die Bemessung der Auflagerpunkte, d. h. Verblenderkonsolen, entscheidend. Eine Auswahl geeigneter Winkel entnehmen Sie ab Seite 10.

Befestigung von Verblenderkonsolen

Verblenderkonsolen dienen dazu, die vertikale Last des Verblendmauerwerks sicher in das dahinterliegende Tragwerk aus Stahlbeton einzuleiten. Die Bestimmung der vertikalen Last $F_{\rm Ed}$ auf Basis der Einflussbreite b, die dem Konsolabstand entspricht, wird ab Seite 52 erläutert.

e PEd X DEd

Die mit der Exzentrizität e in mm wirkende Last F_{Ed} in kN erzeugt ein Moment M_{Ed} in kNm, das über ein Zug-Druck-Kräftepaar $Z_{Ed} = D_{Ed}$ in kN in das Tragwerk eingeleitet wird:

$$Z_{Ed} = D_{Ed} = \frac{M_{Ed}}{X_{min}} = \frac{F_{Ed} \times e}{X_{min}}$$

Die Exzentrizität e in mm ergibt sich aus Schalenabstand a in mm, halber Dicke des Verblendmauerwerks t in mm und Toleranz von 10 mm:

$$e = a + \frac{t}{2} + 10$$

Der Hebelarm x_{min} in mm des Zug-Druck-Kräftepaars berechnet sich aus dem Einbaumaß x in mm der Verblenderkonsole, bei dem die Höhenverstellbarkeit von 30 mm berücksichtigt werden muss:

$$x_{min} = x - 30$$

Verblenderkonsolen sind so dimensioniert, dass die von der Druckkraft D_{Ed} erzeugte Flächenpressung vom Betonbauteil (Qualität \geq C20/25) aufgenommen werden kann. Hinter dem Druckpunkt ist eine oberflächennahe Bewehrung anzuordnen. Die Zugkraft Z_{Ed} muss von einem zugelassenen Dübel oder einer Ankerschiene mit Spezialschraube aufgenommen werden. Wir empfehlen, sich bei der Bemessung der Befestigung von unseren Experten beraten zu lassen.

Ankerschienen mit Spezialschrauben

Die Befestigung von Konsolen an Ankerschienen mit Spezialschrauben bietet viele Vorteile:

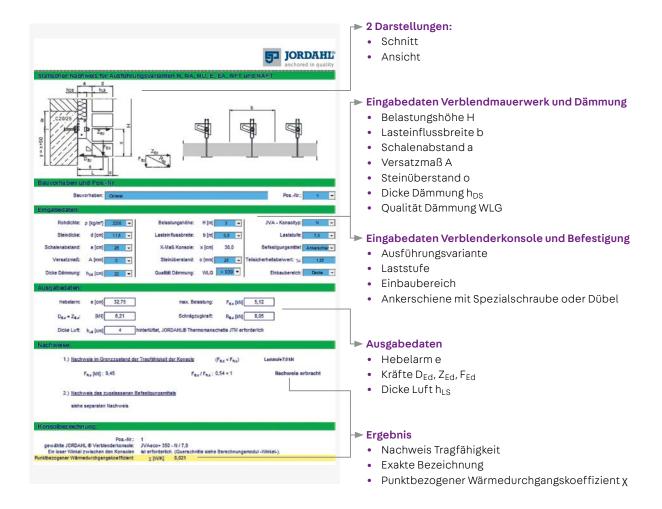
- Horizontale Verschiebbarkeit der Schraube
- Geringe Randabstände
- Einfache Installation ohne Vorkenntnisse, deshalb ist die richtige Ausführung der Befestigung sichergestellt
- Keine Probleme mit Bewehrungstreffern
- Keine aufwändige Suche nach geeigneten Dübeln
- Keine Lärm- und Atemwegsbelastung (Staub, Reaktionsgase) für Installateure und Umwelt
- Kein zusätzliches Werkzeug (Luftkompressor, Bohrhammer)
- Keine Verbrauchsmaterialien (Bohrer, Bürsten)

Befestigung einer Verblendmauerwerkskonsole JVAeco+ mit einer Ankerschiene JTA und einer Spezialschraube

Dübel

Bei der Montage von Verblenderkonsolen können Dübel verwendet werden:

- Bemessung f
 ür jede Einbausituation erforderlich
- Nur Dübel aus Edelstahl mit bauaufsichtlicher Zulassung dürfen verwendet werden
- Bohrlocherstellung und Reinigung gemäß Zulassung


Befestigung einer Verblenderkonsole JVAeco+ mit einem Dübel

Software Verblenderkonsolen

Software

Zur Ermittlung der optimalen Produkte für individuelle Einbausituationen stellen wir Ihnen eine komfortable Bemessungssoftware zur Verfügung: die Software Verblenderkonsolen JVAeco+ und die Software Verblenderkonsolen JMK+ zur Bemessung der Konsolen gemäß allgemeiner bauaufsichtlicher Zulassung Z-21.8-1868 und Typenprüfung TP 12/009. Die Programme ermöglichen den Ausdruck prüffähiger

Nachweise mit zeichnerischer Darstellung. Bei dem Ausdruck werden selbstverständlich auch die punktbezogenen Wärmedurchgangskoeffizienten x ausgegeben, die bei der energetischen Gebäudebewertung nach dem GEG und bei der Erstellung der Ausschreibung benötigt werden. Kostenloser Download unter www.pohlcon.com.

Edelstahl

Dauerhaft korrosionsbeständig anstatt nur korrosionsgeschützt

Korrosion

Korrosion ist die chemische Reaktion eines Werkstoffs mit seiner Umgebung, die eine messbare Veränderung des Werkstoffs bewirkt und zu einer Beeinträchtigung der Funktion eines Bauteils oder Systems führen kann. Feuchtigkeit (z.B. durch Kondensation) ist eine notwendige Voraussetzung für das Auftreten von Korrosion. Die wohl bekannteste Art von Korrosion ist das Rosten, also die Oxidierung von Metallen.

Korrosionsschutz

Als Korrosionsschutz bezeichnet man alle Maßnahmen, die zur Vermeidung von Schäden oder des Verlustes eines Bauteils beitragen, indem die Werkstoffe vor der Zerstörung durch chemische und/oder physikalische Angriffe zu schützen sind.

Korrosionsgeschützt

Umgangssprachlich werden Bauteile mit Hilfe von Pulverbeschichtungen oder Zinküberzügen korrosionsgeschützt, um die Mindestanforderungen an den werkstoffseitigen Korrosionsschutz zu erfüllen.

Korrosionsbeständigkeit

Die Korrosionsbeständigkeit von Edelstahl ist abhängig von der Legierungszusammensetzung, der Oberfläche und dem Gefügezustand vom eingesetzten Stahl. Die Korrosionsbeständigkeit gibt somit an, dass ein Werkstoff in einem gegebenen Korrosionssystem ohne Beeinträchtigungen den Korrosionsbelastungen für das jeweilige Bauwerk oder Bauteil durch die Umgebungsbedingungen standhält.

Allgemeines

Rostfreier Edelstahl hat sich gerade im Bauwesen aufgrund der eigenen Korrosionsbeständigkeit, der sehr guten mechanischen Eigenschaften und weiterer Vorteile wie z.B. der Dauerhaftigkeit und Langlebigkeit etabliert. Hierdurch lassen sich schlanke und sehr tragfähige, aber auch hygienische und wiederverwertbare Bauteile und Abfangkonstruktionen schaffen.

Nichtrostende Stähle erzielen ihren erhöhten Korrosionsschutz durch die außenliegende Passivschicht. Diese sehr dünne und undurchlässige Schicht kann sich bei Auftreten von Defektstellen unter gewissen Einsatzbedingungen sogar repassivieren.

Das sogenannte Korrosionssystem beschreibt die Wechselwirkungen aus mehreren Komponenten und Einflussfaktoren, um eine Korrosion zu vermeiden.

Werkstoffauswahl aus Sicht der Korrosionsbeständigkeit

Die Korrosionsbeständigkeit ist der Hauptgrund für den Einsatz von nichtrostendem Stahl im Bauwesen. Daher ist für die Festlegung einer geeigneten Stahlsorte die Exposition der Bauteile gegenüber bestimmten Umwelteinflüssen zu bestimmen. Zuvor erfolgte diese tabellarisch über die Z-30.3-6, jedoch wird nun dafür ein Punktesystem verwendet, welches durch die Einführung der DIN EN 1993-1-4 zum Tragen kommt.

Dieses Verfahren zur Werkstoffauswahl erfolgt in drei Schritten und ist nur für Europa geeignet:

- Bestimmung des Korrosionsbeständigkeitsfaktors CRF
- Bestimmung der Korrosionsbeständigkeitsklasse CRC
- Auswahl einer Stahlsorte gemäß CRC

Für diese Vorgehensweise müssen jedoch folgende Kriterien erfüllt sein:

- ein neutraler pH-Bereich (pH-Wert zwischen 4 und 10) sollte für die Betriebsbedingungen vorliegen
- die Bauteile sind weder unmittelbar noch teilweise einem chemischen Prozess ausgesetzt
- die tragenden Bauteile sind nicht ständig oder häufig mit Meerwasser in Kontakt

Der CRF wird wie folgt berechnet und ist von der betrachteten Umgebung der Bauteile abhängig:

CRF = F1 + F2 + F3, dabei ist

F1 = Risiko der Exposition gegenüber Chloriden aus Salzwasser oder Tausalzen

F2 = Risiko der Exposition gegenüber Schwefeldioxid

F3 = die Reinigungsvorgaben oder die Exposition gegenüber Abwaschen durch Regen

So lässt sich nun eine Stahlsorte aus den fünf Korrosionsbeständigkeitsklassen CRC I - V in Abhängigkeit vom Korrosionsbeständigkeitsfaktor CRF ermitteln. Das Verfahren gilt für Konstruktionen mit tragender Funktion und setzt das Einhalten der Anforderungen von EN 1090-2 bezüglich Schweißverfahren, der Nachbehandlung von Schweißnähten sowie der Vermeidung und Beseitigung von Verunreinigungen auf den Oberflächen voraus.

Für die Bestimmung des CRF, der CRC sowie der Stahlsorte gelten die Tabellen A.1 - A.3 Anhang A nach DIN EN 1993-1-4.

Edelstahl und verzinkter Stahl

Abfangsysteme für Verblendmauerwerk müssen gemäß DIN EN 1996-2/NA aus dauerhaft korrosionsbeständigem Material sein. Daher muss Edelstahl bei Tragkonstruktionen immer dann eingesetzt werden, wenn die Konstruktion nachträglich nicht mehr kontrollierbar ist. Eine Kombination aus verzinkten Bauteilen und Edelstahl sollte immer vermieden werden. Ist die Notwendigkeit dennoch für diese Ausführung gegeben, sind geeignete Schutzmaßnahmen gegen die sogenannte Bimetallkorrosion zu treffen!

Nähere Informationen: www.edelstahl-rostfrei.de.

Hinweise

Für Verblendabfangungen bedeutet das, dass Edelstähle der CRC III oder höher verwendet werden müssen. Die Verwendung von Edelstählen geringerer CRC oder sogar verzinktem Material sind im Außenbereich daher nicht zulässig! Verblenderkonsolen sowie alle Zubehörteile wie Schrauben, Dübel, Ankerschienen, Gerüstanker, Luftschichtanker etc. werden aus Edelstahl der entsprechenden Korrosionsbeständigkeitsklasse hergestellt.

Umgang mit Edelstahl

Grundlagen

Um die Oberflächenqualität und somit den Korrosionsschutz von Edelstahl zu erhalten, müssen in allen Phasen von Herstellung, Transport, Lagerung und Montage Verunreinigungen durch den Kontakt mit Normalstahl vermieden werden. Ebenso wenig darf Kontakt mit Chemikalien wie Säuren und säurehaltigen Lösungen, Fetten und Ölen entstehen.

Ist bei einem Bauteil aus Edelstahl die Oberfläche beschädigt worden, stellt sich die Passivschicht des Edelstahls kurzfristig wieder selbstständig her. Es ist empfehlenswert, Kontakt mit uns aufzunehmen.

Wichtige Hinweise

Transport

Beim Transport von Edelstahlbauteilen sind Gurte und Bänder zu verwenden, die die Oberfläche nicht beschädigen, z. B. aus Kunststoff. Hebevorrichtungen müssen vor dem Einsatz gründlich gereinigt werden. Zwischen Edelstahlbauteilen und der Holzpalette muss eine geeignete Zwischenlage angeordnet werden (produktionsseitig vorhanden). Edelstahlbauteile und Bauteile aus Normalstahl müssen so transportiert und gelagert werden, dass sie keinen direkten oder indirekten Kontakt zueinander haben.

Lagerung

Edelstahlbauteile müssen trocken und möglichst überdacht gelagert werden, insbesondere wenn die Bauteile in Kartons verpackt sind. Ein Kontakt zwischen Bauteilen aus Edelstahl und Normalstahl ist zu vermeiden. Edelstahl ist außerdem vor Flugrost und Bohrmehl durch entsprechende Maßnahmen, wie z. B. Abdeckung mit einer Plane, zu schützen.

Montage

Edelstahlbauteile müssen mit separaten Werkzeugsätzen montiert werden. Ist eine nachträgliche Bearbeitung (Schneiden, Schleifen etc.) auf der Baustelle erforderlich, dürfen nur Werkzeuge eingesetzt werden, die für Edelstahl geeignet sind und zuvor nicht zur Bearbeitung von Normalstahl verwendet worden sind. Winkel dürfen nur durch Holzbalken unterstützt werden, die noch keinen Kontakt mit Normalstahl hatten. Wenn Normalstahlprofile zur Unterstützung verwendet werden, muss eine geeignete Zwischenlage angeordnet werden.

Hinweise

Zum Umgang mit Edelstahl finden Sie weitere Informationen im Merkblatt 969 "Fertigung und Montage von Konstruktionen aus nichtrostendem Stahl – allgemeine Hinweise" der Informationsstelle Edelstahl Rostfrei (www.edelstahl-rostfrei.de).

Ausschreibungstexte

Kostenfreie Ausschreibungstexte für Ihr Leistungsverzeichnis

Ausschreibungstexte sind ein zentraler Bestandteil der Arbeit von Planern, Architekten und Bauingenieuren. Wir wollen Ihnen das Zusammenstellen der Ausschreibungstexte für Ihre Leistungsverzeichnisse so einfach wie möglich machen. Darum stellen wir Ihnen für unser komplettes Sortiment vorgefertigte Ausschreibungstexte zur Verfügung. So können Sie sich noch einfacher und schneller für Bauprojekte bewerben.

Sie können die Texte kostenfrei auf Ausschreiben.de oder Heinze.de herunterladen. Unsere Ausschreibungstexte sind in den Formaten Word, Excel, RTF, PDF, Text, GAEB XML, GAEB 90, DATANORM 5 und ÖNORM verfügbar.

www.ausschreiben.de

Hier finden Sie kostenfreie Ausschreibungstexte zu allen Produkten unserer Herstellermarken.

www.heinze.de

Geballtes Fachwissen: Erfahren Sie alles über unser Portfolio und unsere Produktneuheiten.

Stichwortverzeichnis

A		JW Winkel	10	Windposts JWP	33
		JWP Windpost		Winkelkonsolen für den Normalfall	
Ankerschienen JTA-CE	40	•		Winkelquerschnitte	
Ankerschienenkurzstück für FT-Stürze		K			
Aufmauerhöhen	9			Z	
		Korrosionsbeständigkeit (CRC)	58		
В				Zulassung	5, 46
		L		Zweischaliges Mauerwerk	
Bauaufsichtliche Zulassung	5, 46			Zwischenwinkel	
Bauphysik		L+ Winkelkonsolen	18		
Befestigungsmittel		Laststufen Verblenderkonsolen			
		Luftschichtanker JLA			
D					
		M			
Dehnungsfugen	44				
Drahtbügel		Maueranschluss mit Schienen und Anker	34		
Diditiboget	21	Montagehinweise			
E		Montageriniweise			
_		N			
E/EA Verblenderkonsolen	17	The state of the s			
Edelstahl		N/NA/NU Verblenderkonsolen	0		
Einbauteile für Fertigteilstürze		Nachweis Auflagerwinkel			
Einmörtelkonsolen JMK+ EPD (Umweltproduktdeklaration)		Nachweis Befestigungsmittel Nachweis Laststufe für Einzelkonsolen			
EPD (Uniwellproduktdeklaration)	5				
F		Nachweis Laststufe für Einzelkonsolen + JW			
•		Nachweis Laststufe für Winkelkonsolen			
5/510.1		Nachweis max. Aufmauerhöhe			
F/FAR Verblenderkonsolen		NFT/NAFT Verblenderkonsolen	20		
Fertigteilsturzverankerungen	20	P			
G		P			
9		D/DADA/subles de uls constant	10		
0.5	47	P/PAR Verblenderkonsolen	12		
Gebäudeenergiegesetz (GEG) Gerüstanker		S			
		3			
Geschlossene Untersicht		- 6			
Gewölbewirkung	55	Software			
The second secon		Sonderausführungen	23		
1		U			
100.01		0			
ISO-Clip	31				
1		U-Wert Berechnung			
,		Umweltproduktdeklaration (EPD)	5		
		V			
JAV Attika-Verblendanker		V			
JFT+ Abhängesystem		W. I			
JFTW Fertigteilsturzwinkel		Verblenderkonsolen	46		
JGA+ Gerüstanker		\\/			
JLA Luftschichtanker		W			
JMA Maueranschlussanker					
JMK+ Einmörtelkonsolen		Wandaufbau			
JRH Rollschichthalter	17	Wärmedurchgangskoeffizient	48		

Unser Synergie-Konzept für Sie

Mit uns profitieren Sie von der gesammelten Erfahrung dreier etablierter Hersteller, die Produkte und Expertise in einem umfassenden Angebot kombinieren. Das ist das PohlCon-Synergie-Konzept.

Full-Service-Beratung

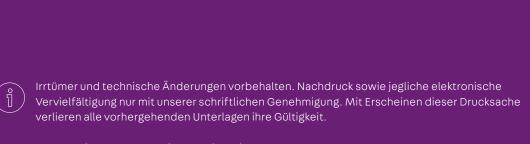
Unser weitreichendes Beraternetzwerk steht Ihnen zu allen Fragen rund um unsere Produkte vor Ort zur Verfügung. Von der Planung bis hin zur Nutzung genießen Sie die persönliche Betreuung durch unsere qualifizierten Mitarbeiterinnen und Mitarbeiter.

Digitale Lösungen

Unsere digitalen Angebote unterstützen Sie zielgerichtet in der Planung mit unseren Produkten. Von Ausschreibungstexten über CAD-Details und BIM-Daten bis hin zu modernen Softwarelösungen bieten wir Ihnen maßgeschneiderte Unterstützung für Ihre Planung.

7 Anwendungsfelder

Wir denken in ganzheitlichen Lösungen. Deshalb haben wir unsere Produkte für Sie in sieben Anwendungsfelder zusammengefasst, in denen Sie von der Synergie des PohlCon-Produktportfolios profitieren können.


10 Produktkategorien

Um das passende Produkt in unserem umfangreichen Sortiment noch schneller finden zu können, sind die Produkte in zehn Produktkategorien unterteilt. So können Sie zielsicher zwischen unseren Produkten navigieren.

Individuelle Sonderlösungen

Für Ihr Projekt eignet sich kein Serienprodukt auf dem Markt? Außergewöhnliche Herausforderungen meistern wir mit der langjährigen Expertise der drei Herstellermarken im Bereich individueller Lösungen. So realisieren wir gemeinsam einzigartige Bauprojekte.

PohlCon GmbH Nobelstraße 51

12057 Berlin

T +49 30 68283-04 F +49 30 68283-383

www.pohlcon.com