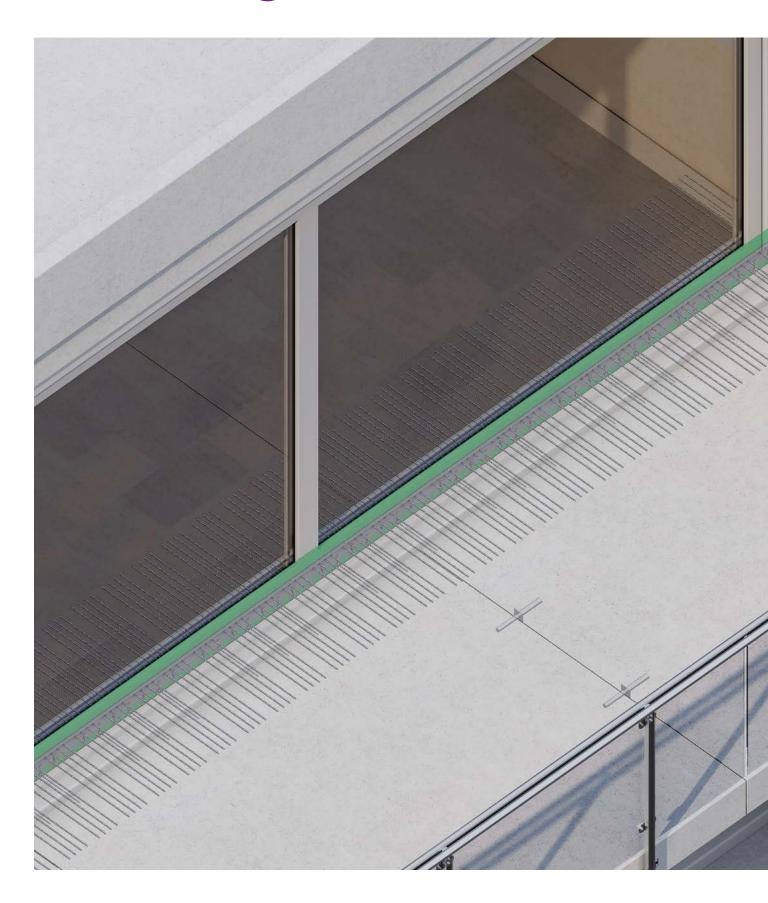


ISOPRO® Wärmedämmelemente

Technische Information



Inhaltsverzeichnis

Anwendungsfeld Balkone	4	Auskragende Bauteile	29
ISODDO® Tura an ühayai aht		ISOPRO® IP und IPT	30
ISOPRO® Typenübersicht	6	ISOPRO® IP 2-teilig	44
Produktinformationen	12	ISOPRO® IP Varianten	48
Bemessungsgrundlagen	15	ISOPRO® IP ECK und IPT ECK	56
Bemessungssoftware		Gestützte Bauteile	65
ISODESIGN	17	ISOPRO® IPQ und IPZQ,	
		IPQS/IPTQS und IPQZ	66
Bauphysik	20	ISOPRO® IPTQQ und IPTQQS	74
Einbauhinweise	26	Durchlaufelemente	81
		ISOPRO® IPTD	82

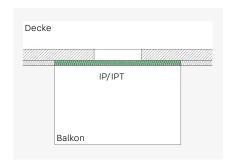
Elemente für	
besondere Lasten	89
ISOPRO® IP 80-H	90
ISOPRO® IPTA	94
ISOPRO® IPTF	98
ISOPRO® IPO	102
ISOPRO® IPTS	106
ISOPRO® IPTW	110
Dämmelemente ohne	
statische Funktion	117
ISOPRO® Z-ISO	118
Service	122
Unser Synergie-Konzept für Sie	122
TOT SIE	122

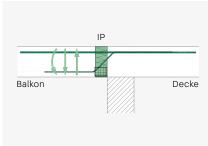
Anwendungsfeld Balkone

Lösungen der PohlCon für Balkone

Ein Balkon soll den Wohnkomfort erhöhen – gleichzeitig aber nicht zur Energiekostenfalle werden. Damit dieser zuverlässig verankert ist und angrenzende Räume nur ein Minimum an Wärme verlieren, haben wir den Balkonbau für Sie neu durchdacht: von tragenden Wärmedämmelementen bis hin zur Befestigung der Geländer. Unsere abgestimmten Lösungen sorgen für eine optimale Energiebilanz und halten die Bauteile zuverlässig an Ort und Stelle. Weiterhin bieten wir Ihnen die passende Beratung und eine zugeschnittene Softwarelösung für die Bemessung. So können Sie selbst architektonisch anspruchsvolle Balkone schnell, einfach und sicher planen.

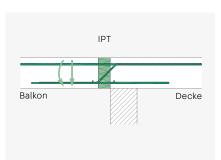
ISOPRO®

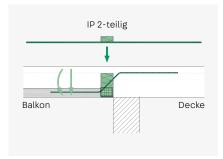

Das tragende Wärmedämmelement ISOPRO® sorgt für eine kraftschlüssige Verbindung zu Außenbauteilen. Es besteht aus fünf Hauptkomponenten, die alle auf zuverlässige Kraftübertragung in Kombination mit einer möglichst niedrigen Wärmeleitfähigkeit ausgelegt sind.


Produktkategorien für das Anwendungsfeld

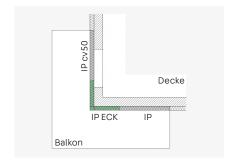
- Wärmedämmung
- Befestigung
- Verbindung
- Fassadenbefestigung

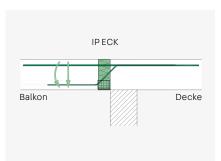
ISOPRO® Typenübersicht

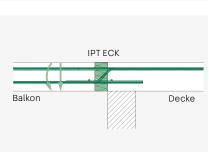

Auskragende Konstruktionen


ISOPRO® IP

- Übertragung von negativen Momenten sowie positiven Querkräften
- Übertragung von negativen Momenten sowie positiven und negativen Querkräften bei der Ausführung IP QX
- Ausführung mit Betondrucklagern
- Seite 30

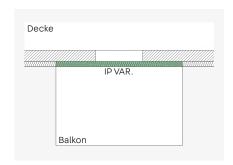

ISOPRO® IPT

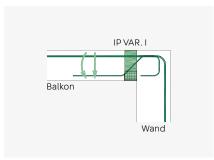

- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Stahldruckstäben
- Seite 30



ISOPRO® IP 2-teilig

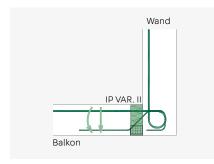
- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Betondrucklagern
- 2-teilige Ausführung für Elementplatten
- Seite 44

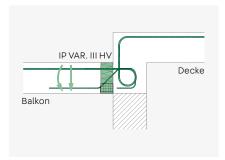




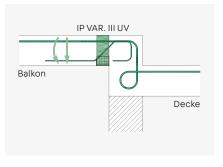
ISOPRO® IP ECK, IPT ECK

- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung IP mit Betondrucklagern
- Ausführung IPT mit Stahldruckstäben
- Lösung für Eckbalkone
- Seite 56


Auskragende Konstruktionen bei Wandanschlüssen/höhenversetzten Decken

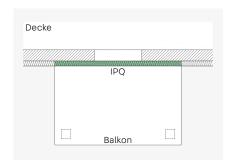

ISOPRO® IP VAR. I

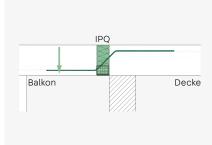
- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Betondrucklagern
- Anschluss an eine nach unten führende Wand
- Seite 48


ISOPRO® IP VAR. II

- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Betondrucklagern
- Anschluss an eine nach oben führende Wand
- Seite 48

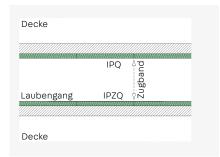
ISOPRO® IP VAR. III HV

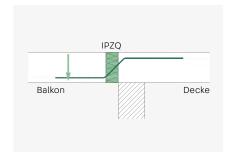

- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Betondrucklagern
- Anschluss an eine nach oben höhenversetzte Decke
- Seite 48



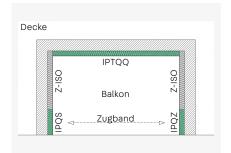
ISOPRO® IP VAR. III UV

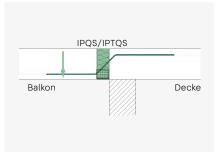
- Übertragung von negativen Momenten und positiven Querkräften
- Ausführung mit Betondrucklagern
- Anschluss an eine nach unten höhenversetzte Decke
- Seite 48


Gestützte Konstruktionen

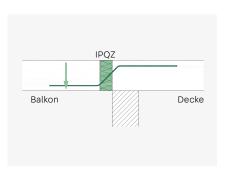


ISOPRO® IPQ

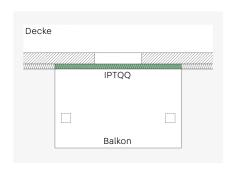

- Übertragung von positiven Querkräften
- Ausführung mit Betondrucklagern
- Seite 66

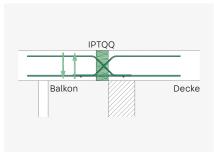


ISOPRO® IPZQ


- Übertragung von positiven Querkräften
- Ausführung ohne Drucklager für zwängungsfreie Anschlüsse
- Seite 66

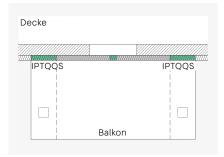
ISOPRO® IPQS/IPTQS

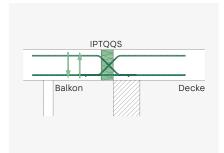

- Übertragung von positiven Querkräften
- Ausführung IPQS mit Betondrucklagern
- Ausführung IPTQS mit Stahldruckstäben
- Kurzelement zur punktuellen Lastaufnahme
- Seite 66



ISOPRO® IPQZ

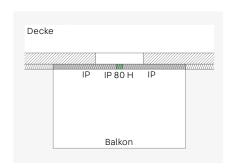
- Übertragung von positiven Querkräften
- Ausführung ohne Drucklager für zwängungsfreie Anschlüsse
- Kurzelement zur punktuellen Lastaufnahme
- Seite 66

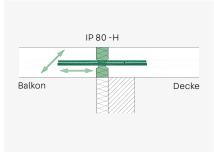

Gestützte Konstruktionen mit abhebenden Lasten



ISOPRO® IPTQQ

- Übertragung von negativen und positiven Querkräften
- Ausführung mit Stahldruckstäben
- Seite 74

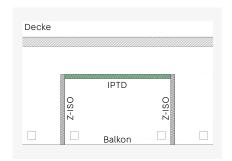


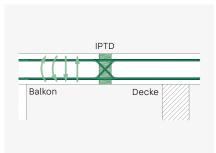


ISOPRO® IPTQQS

- Übertragung von negativen und positiven Querkräften
- Ausführung mit Stahldruckstäben
- Kurzelement zur punktuellen Lastaufnahme
- Seite 74

Horizontale Lasten und Erdbebenlasten

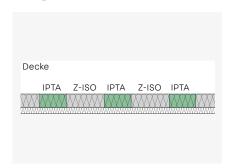


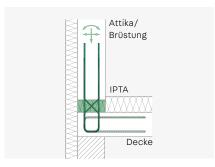


ISOPRO® IP 80-H

- Übertragung von Horizontalkräften parallel und/oder senkrecht zur Dämmebene
- Seite 90

Durchlaufende Platten

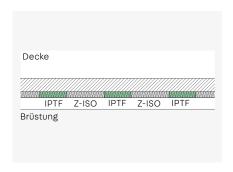


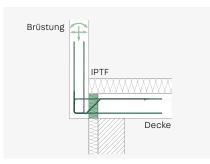


ISOPRO® IPTD

- Übertragung von positiven und negativen Momenten und Querkräften
- Ausführung mit Zug-/Druckstäben
- Seite 82

Aufgesetzte Attiken und Brüstungen

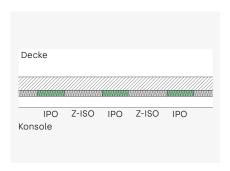


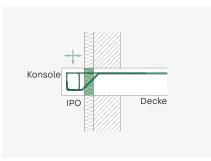


ISOPRO® IPTA

- Übertragung von Momenten, Normalkräften sowie Horizontalkräften
- Punktueller Einsatz
- Seite 94

Vorgesetzte Brüstung

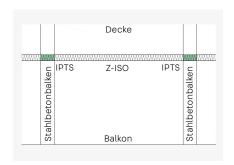


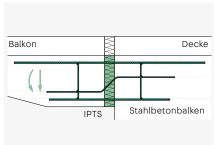


ISOPRO® IPTF

- Übertragung von Momenten, Querkräften sowie Horizontalkräften
- Punktueller Einsatz
- Seite 98

Konsole

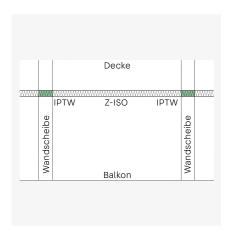


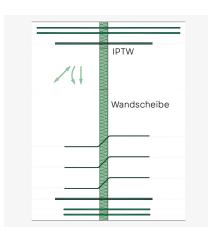


ISOPRO® IPO

- Übertragung von Querkräften und Horizontalkräften
- Punktueller Einsatz
- Seite 102

Balken

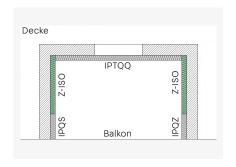


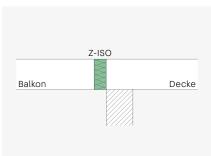


ISOPRO® IPTS

- Übertragung von negativen
 Momenten und positiven Querkräften
- Ausführung mit Druckstäben
- Seite 106

Wände





ISOPRO® IPTW

- Übertragung von negativen
 Momenten, positiven Querkräften
 sowie Horizontalkräften
- Ausführung mit Druckstäben
- Seite 110

Zwischendämmung

ISOPRO® Z-ISO

- Keine statische Funktion
- Zwischendämmung bei punktueller Lagerung
- Seite 118

Produktinformationen

Funktion des ISOPRO® Elements

Als tragendes Wärmedämmelement übernimmt ISOPRO® folgende Funktionen:

- Thermische Trennung von Stahlbetonbauteilen zur Lösung von bauphysikalischen Problemen am Übergang zwischen Innen- und Außenbauteilen
- Kraftschlüssige Verbindung der Stahlbetonbauteile über die Dämmfuge hinweg

Die Lastübertragung über die Fuge hinweg erfolgt über Zug- und Querkraftstäbe sowie eine Druckkomponente. In Abhängigkeit des ISOPRO® Typs erfolgt die Ausführung der Druckkomponente als Drucklager aus Spezialbeton (Elemente IP) oder als Druckstab aus Stahl (Elemente IPT). Aus Korrosionsschutzgründen und zur Reduzierung des Wärmedurchgangs durch die statischen Komponenten werden Bewehrungselemente im Bereich des Dämmkörpers in Edelstahl ausgeführt. Der Wechsel von Edelstahl auf Baustahl erfolgt über ein spezielles Schweißverfahren. Bei Standardelementen werden die Zugstäbe im Bereich der Dämmung aus Edelstahl mit im Vergleich zum angeschlossenen Baustahl reduzierten Durchmessern ausgeführt.

Das ISOPRO® Element ist in unterschiedlichen Tragstufen erhältlich. In den Tragstufen variieren die Elemente hinsichtlich Anzahl und Durchmesser von Zug- und Querkraftstäben sowie Druckkomponenten. Zur Erhöhung der Stabilität werden bei großen Stabdurchmessern deckenseitig konstruktive Verbinder angebracht. Die Elemente sind grundsätzlich ab einer Höhe von 160 mm verfügbar. In Abhängigkeit des verwendeten Querkraftstabdurchmessers kann es jedoch zu Einschränkungen bei der Mindesthöhe kommen.

Beim Einbau ist zwingend die auf dem Etikett angegebene Einbaurichtung zu beachten. Die Einbaurichtung ist durch die Angabe "oben" und mit einem Pfeil in Richtung der Balkonseite (des Kaltbereichs) eindeutig auf jedem Element markiert.

Materialien des ISOPRO® Elements

Zug-, Querkraft-, Druckstab: Betonstahl B500B,

Nichtrostender Betonrippenstahl nach allgemeiner bauaufsichtlicher Zulassung, Werkstoff-Nr. 1.4571, 1.4362

oder 1.4482

Drucklager: Hochleistungsspezialbeton
Dämmkörper: Neopor®* Polystyrol-Hart-

schaum, $\lambda = 0.031 \text{ W/mK}$

Brandschutzplatten: Faserzementplatten der

Baustoffklasse A1

Verwendbarkeitsnachweise

ISOPRO®: ETA -17/0466, DIBt

in Verbindung mit allgemeiner Bauartgenehmigung Z-15.7-354,

DIBt

Materialien der angrenzenden Bauteile

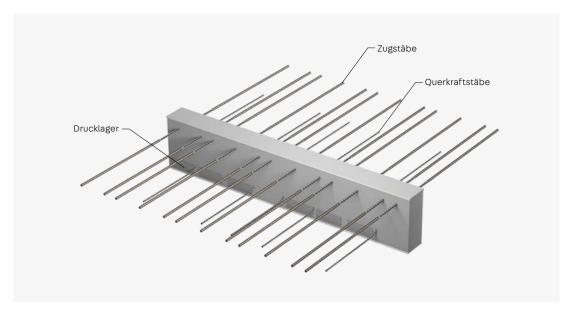
Beton: Normalbeton nach DIN 1045-1

bzw. DIN EN 206-1 mit einer Rohdichte von 2.000 bis

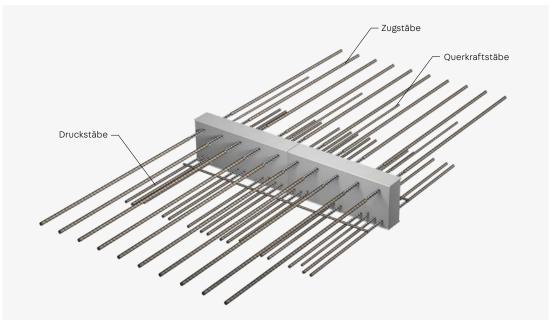
2.600 kg/m³

Betonfestigkeitsklassen: Außenbauteile ≥ C25/30

Innenbauteile ≥ C20/25


Betonstahl: B500

Bauseitige Bewehrung


Die Bewehrung der an die ISOPRO® Elemente anschließenden Bauteile erfolgt gemäß den Angaben des Tragwerksplaners aufgrund der statisch erforderlichen Bewehrung.

Produktkomponenten

ISOPRO® IP

ISOPRO® IPT

Betondeckung

Expositionsklasse und Betondeckung

In Abhängigkeit der Expositionsklasse und der Zulassung wird die Mindestbetonfestigkeit für die an die ISOPRO® Elemente angrenzenden Bauteile sowie die erforderliche Betondeckung cv für die ISOPRO® Elemente bestimmt. Die jeweils höhere Mindestbetonfestigkeitsklasse ist maßgebend.

	Bewehrungskorrosion		Mindestbetonfestigkeitsklasse				
	DIN EN 1992-1-1	DIN EN 1992-1-1/NA	Zulassung Innenbauteile	Zulassung Außenbauteile	Bauteile c _{nom}	ISOPRO® cv	
XC3	Mäßige Feuchte, Außen- bauteile, Feuchträume	C20/25	C20/25	C25/30	35	30	
XC4	Wechselnd nass und trocken, Außenbauteile mit direkter Beregnung	C25/30	C20/25	C25/30	40	35	
XD1	Mäßige Feuchte, Sprüh- nebelbereich von Verkehrsflächen	C30/37	C20/25	C25/30	55	50	
XS1	Salzhaltige Luft, Außen- bauteile in Küstennähe	C30/37	C20/25	C25/30	55	50	
XD1	Mäßige Feuchte, Sprüh- nebelbereich von Verkehrsflächen	C30/37	C20/25	C25/30	55	50	
XS1	Salzhaltige Luft, Außen- bauteile in Küstennähe	C30/37	C20/25	C25/30	55	50	

Betondeckung ISOPRO®

- Das cv-Maß der ISOPRO® Elemente darf durch geeignete Qualitätsmaßnahmen bei der Herstellung gemäß DIN EN 1992-1-1/NA um $\Delta c_{\rm dev} = 5$ mm reduziert werden.
- Für die ISOPRO® Elemente IP/IP 2-teilig/IPT/IP VAR. kann cv35 oder cv50 für die Betondeckung der Zugstäbe gewählt werden.
- Die ISOPRO® Elemente IP ECK und IPT ECK sind mit einer Betondeckung für die Zugstäbe von cv35/cv50 verfügbar.
- Für die Querkraftelemente ist die Betondeckung oben in Abhängigkeit der Elementhöhe cv35 bis cv85.
- Die Betondeckung der Druckstäbe und der Querkraftstäbe unten beträgt generell cv30 (i.d.R. geringere Exposition im Vergleich zur Balkonoberseite).
- Die ISOPRO® Elemente IPTD haben für die gewählte obere Betondeckung von cv35 unten eine Betondeckung cv30, für die gewählte obere Betondeckung cv50 unten eine Betondeckung cv50.

Bemessungsgrundlagen

Generelle Hinweise

Bemessung

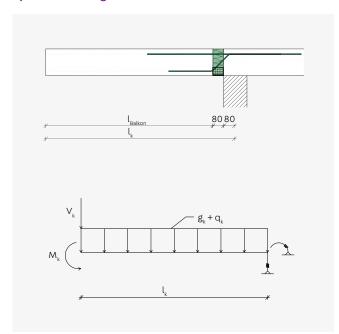
- Der Nachweis der an die ISOPRO[®] Elemente angrenzenden Stahlbetonbauteile erfolgt durch den Tragwerksplaner.
- Bei unterschiedlichen Betongüten der angrenzenden Bauteile (z.B. Balkon C25/30; Decke C20/25) ist die kleinere Betongüte für die Dimensionierung der ISOPRO® Elemente maßgebend.
- Die angegebenen Bemessungswerte gelten für Betongüten
 ≥ C25/30. Werte für C20/25 auf Anfrage.
- Die für die bauseitige Bewehrung angegebenen Tabellenwerte gelten für Vollauslastung der ISOPRO® Elemente. Eine Abminderung um $m_{\rm Fd}/m_{\rm Rd}$ beziehungsweise $v_{\rm Fd}/V_{\rm Rd}$ ist zulässig.
- Die angegebenen Mindesthöhen in Abhängigkeit der Querkrafttragstufe gelten für Betondeckung cv35. Für cv50 sind die Mindesthöhen entsprechend um 20 mm zu erhöhen.
- Zur Aufnahme von planmäßig auftretenden Horizontalkräften können die Kurzelemente IPH oder IPE eingesetzt werden.
- Bei auskragenden Konstruktionen ohne Nutzlast mit planmäßig auftretendem Moment aus einer nicht querkrafterhöhenden Last sind die ISOPRO® IP Elemente gesondert durch unsere Anwendungstechnik nachzuweisen.
- Bei der Bewehrungsführung ist auf die Betonierbarkeit zu achten. Dies gilt besonders für ISOPRO® Elemente mit hohem Bewehrungsgrad.

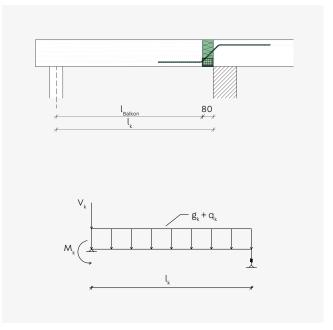
Sonderelemente

 Über die in dieser Dokumentation geführten Standardelemente hinaus bieten wir auf das Bauvorhaben, die Schnittgrößen und die Bauteilgeometrie abgestimmte Sonderkonstruktionen an. Die Planung, Bemessung und Fertigung von Sonderkonstruktionen erfolgt unter Einhaltung der Anforderungen der Zulassungen und der DIN EN 1992-1-1 und DIN EN 1992-1-1/NA.

Handhabung und Einbau auf der Baustelle

- Bei Verwendung von ISOPRO® Elementen mit Betondrucklagern ist darauf zu achten, dass der Kraftschluss zwischen Drucklager und dem Beton des Bauteils gewährleistet ist. Bei Verwendung von Elementplatten ist ein Ortbetonbzw. Vergussstreifen mit mindestens 100 mm Breite zu berücksichtigen.
- Bei gleichzeitiger Verwendung von ISOPRO® Elementen mit Stahldruckstäben und deckenseitigen Elementplatten ist darauf zu achten, die Breite des Ortbetonstreifens auf die Länge der Druckstäbe abzustimmen.
- Bei Verwendung von ISOPRO® Elementen mit Brandschutzausführung REI 90/REI 120 ist darauf zu achten, die Brandschutzplatten nicht zu beschädigen.
- Nachträgliches Biegen der Bewehrungsstäbe auf der Baustelle führt zum Erlöschen der Zulassung und der Gewährleistung durch die PohlCon GmbH.
- Die bauseitige Teilung der ISOPRO® Meterelemente ist möglich. Reduzierte Tragkraft und minimale Randabstände der ISOPRO® Komponenten sind zu beachten.
- In hochbewehrten Bauteilen (z.B. Unterzügen) ist das Verlegen des ISOPRO® Elements vor der bauseitigen Bewehrung zu erwägen.


Beratung


Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

Dimensionierung

Dimensionierung der ISOPRO® Elemente – FEM-Berechnung/Handrechnung

Systemermittlung

250.000 kN/m/m

Balkon auskragend / Modell

Balkon gestützt / Modell

Lagerbedingungen

Handrechnung: eingespannt gelenkig

FEM-Berechnung:

Drehfeder: 10.000 kNm/rad/m

Drehfeder: 250.000 kN/m/m Senkfeder:

Lastannahmen:

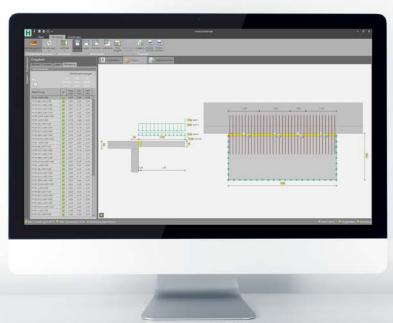
g,: Ständige Lasten (Eigengewicht + Auflast)

Senkfeder:

V_s: Randlast (Geländer, Brüstung, Sockel etc.)

M_k: Randmoment (infolge Horizontallast auf Geländer, Brüstung etc.)

Vorgehen bei FEM-Berechnung


- Balkonplatte als von der Tragstruktur des Gebäudes getrenntes System berechnen
- Auflager im Anschlussbereich mit den oben angegebenen Steifigkeiten definieren
- Schnittgrößen linear-elastisch ermitteln
- ISOPRO® Elemente auswählen
- Die ermittelten Schnittgrößen als Randlast auf die Tragstruktur des Gebäudes ansetzen

Hinweise

Wenn die Steifigkeitsverhältnisse entlang des Plattenrandes stark variieren (z.B. Stützen entlang des Plattenrandes und keine durchgehende Wand), sollte die Balkonplatte nicht als vom Gebäude getrenntes System berechnet werden. In diesem Fall sollte entlang des Balkonplattenrandes eine Gelenklinie mit den oben angegebenen Steifigkeiten definiert werden. Mittels der Gelenkkräfte können die ISOPRO® Elemente bestimmt werden.

Bemessungssoftware ISODESIGN

Dimensionierung der ISOPRO® Elemente

Mit dem Bemessungsprogramm ISODESIGN geben wir unsere langjährige Erfahrung bei der Bemessung unserer ISOPRO® Wärmedämmelemente für die gängigsten Balkonsysteme an Sie weiter.

Sie können zwischen den Balkonsystemen Kragbalkon, Balkon auf Stützen, Loggia, Inneneckbalkon und Außeneckbalkon wählen oder in der freien Eingabe auch außergewöhnliche Geometrien eingeben. Nach der Eingabe der Geometriedaten und der einwirkenden Lasten können Sie die entsprechenden ISOPRO® Elemente auswählen.

Die Einteilung und die geometrischen Gegebenheiten der ISOPRO® Elemente können im Grundriss und Schnitt auf ihre Machbarkeit überprüft werden. Zur weiteren Bearbeitung stehen ein Statikausdruck und eine Stückliste zur Verfügung.

Vorteile

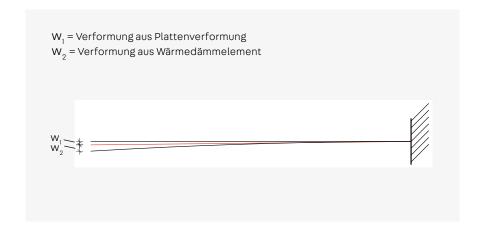
- Alle gängigen Balkonsysteme wählbar
- Bemessung mit FEM-Modul
- Protokollausgabe inkl. Nachweis

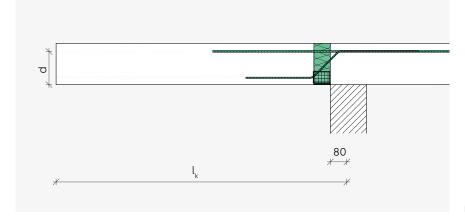
Beratung

Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

T+4977429215-300 technik-hbau@pohlcon.com

Nachweis der Gebrauchstauglichkeit

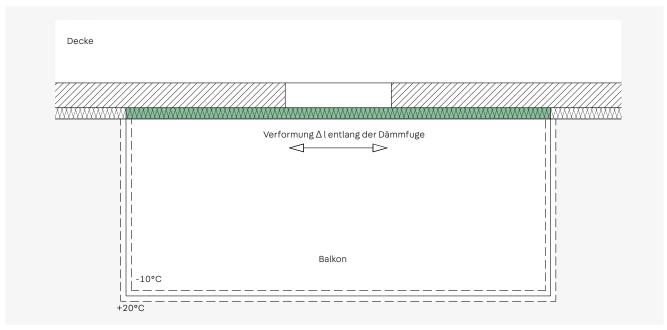

Überhöhung und Biegeschlankheit


Überhöhung

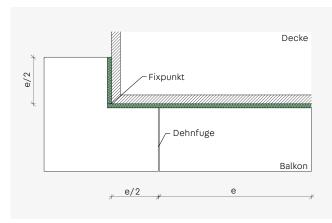
Eine auskragende Platte unter Belastung verformt sich, wobei die maximale Verformung am Kragarmende auftritt. Wird eine auskragende Platte mit einem ISOPRO® Element angeschlossen, muss zur Ermittlung der maximalen Verformung der Anteil aus der Platte selbst mit dem des ISOPRO® Elements überlagert werden. Hierbei verhalten sich die ISOPRO® Komponenten Zug und Druck näherungsweise ähnlich einem Federsystem, das gestreckt beziehungsweise gestaucht wird. Der entstehende Drehwinkel α wird zur Ermittlung der maximalen Verformung durch das ISOPRO® Element herangezogen. Wir

empfehlen den Nachweis im Grenzzustand der Gebrauchstauglichkeit für die quasi-ständige Lastfallkombination zu führen. Zur Ermittlung der erforderlichen Überhöhung der auskragenden Platte sollte die Verformung entsprechend der Richtung der planmäßigen Entwässerung auf- beziehungsweise abgerundet werden.

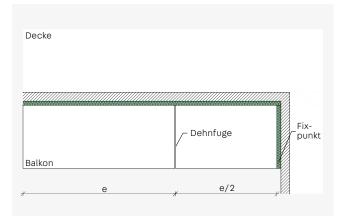
Für die Ermittlung der Verformung siehe Einzelkapitel der ISOPRO® Typen.


ISOPRO® IP - Statisches System

Biegeschlankheit


Die Biegeschlankheit ist definiert als Verhältnis der statischen Höhe d der Balkonplatte zur Auskragungslänge $l_{\rm k}$. Die Biegeschlankheit einer Platte hat Auswirkungen auf deren Schwingverhalten. Daher empfehlen wir, die Biegeschlankheit zu begrenzen. Grenzwerte für die Biegeschlankheit sind auf Seite 37 angegeben.

Dehnfugenabstand


Durch Temperatureinwirkung auf Außenbauteile wie Balkone oder Vordächer kommt es zur Verformung von Stahlbetonbauteilen. Diese dehnen sich beim Erwärmen aus und ziehen sich beim Abkühlen zusammen. Werden die Stahlbetonbauteile mit ISOPRO® Elementen thermisch getrennt, so kommt es parallel zur Dämmfuge zu einer Auslenkung der ISOPRO® Komponenten infolge der Verformung der Stahlbetonplatte.

Balkonplatte unter Temperatureinwirkung

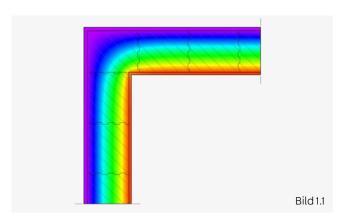
Dehnfugenanordnung bei unterschiedlichen Balkonsystemen

Um die Beanspruchung der ISOPRO® Elemente bedingt durch Temperatureinwirkungen zu begrenzen, sind sehr lange Stahlbetonbauteile durch Dehnfugen zu trennen. Der maximal zulässige Dehnfugenabstand e ist in der Zulassung geregelt. Der Dehnfugenabstand e ist vom Stabdurchmesser und somit vom eingesetzten ISOPRO® Typ abhängig und in den jeweiligen Produktkapiteln ersichtlich. Durch Fixpunkte, wie eine Auflagerung über Eck oder die Verwendung von ISOPRO® IPH oder

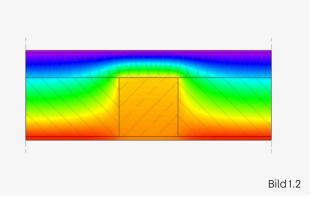
IPE Elementen, kommt es zu erhöhten Zwängungen, wodurch der maximal zulässige Dehnfugenabstand auf e/2 reduziert werden muss.

Zur Verhinderung unterschiedlicher Setzungen von durch Dehnfugen getrennten Bauteilen können diese mit längsverschieblichen Schubdornen Typ HED verbunden werden.

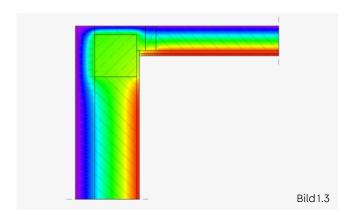
Bauphysik


Wärmeschutz

Definition Wärmebrücken


Wärmebrücken sind Schwachstellen in der wärmeübertragenden Gebäudehülle, die im Vergleich zu Regelquerschnitten einen erhöhten Wärmeverlust aufweisen. Im Allgemeinen wird bei Wärmebrücken zwischen geometrischen und materialbedingten Wärmebrücken unterschieden. Geometrische Wärmebrücken entstehen, wenn die raumseitige Fläche kleiner als die außenseitige ist. Dies trifft beispielsweise auf Gebäudeaußenecken zu (Bild 1.1). Materialbedingte Wärmebrücken sind Bereiche innerhalb der Konstruktion, die durch eine Änderung von Wärmeleitfähigkeiten innerhalb des Bauteils gekennzeichnet sind, beispielsweise Stahlbetonstützen in der Außenwand (Bild 1.2).

Am Bau kommt es häufig zu einem Zusammenspiel beider Effekte. So handelt es sich beispielsweise bei einem Ortganganschluss um eine Überlagerung eines geometrischen und materialbedingten Wärmebrückeneffekts (Bild 1.3).


Zusätzlich wird zwischen punktförmigen und linienförmigen Wärmebrücken unterschieden. Eine punktförmige Wärmebrücke beschreibt eine auf eine kleine Fläche begrenzte Störung der thermischen Hülle, beispielsweise dämmungsdurchstoßende Stützen oder Dübel. Der punktförmige Wärmedurchgangskoeffizient χ (Chi) beschreibt in diesem Fall die energetischen Verluste. Linienförmige Wärmebrücken sind hingegen Störungen der Gebäudehülle, die in einer bestimmten Länge auftreten, beispielsweise an Deckenauflagen, Fensterlaibungen oder Balkonanschlüssen. Die Energieverluste von linienförmigen Wärmebrücken werden über den längenbezogenen Wärmedurchgangskoeffizienten Ψ (Psi) beschrieben.

Geometrische Wärmebrücke

Materialbedingte Wärmebrücke

Beispiel einer sowohl geometrischen als auch materialbedingten Wärmebrücke

Auswirkungen von Wärmebrücken

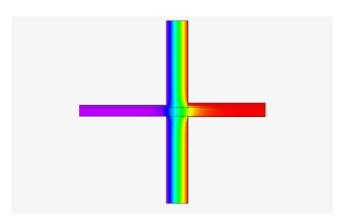
Wärmebrücken weisen einen im Vergleich zur restlichen Hüllfläche deutlich höheren Wärmestrom auf. Durch den erhöhten Wärmefluss sinkt in diesem Bereich die innere Oberflächentemperatur, was einen erhöhten Heizenergiebedarf zur Folge hat. Kommt es darüber hinaus zu einer Unterschreitung der Taupunkttemperatur an dieser Stelle, fällt in der Raumluft befindliche Feuchtigkeit als Tauwasser aus. Die Folge sind Schäden an der raumseitigen Bauteiloberfläche und schon bei lediglich 80 % relativer Luftfeuchte Schimmelpilzbildung, die

gesundheitliche Belastungen auslöst. Daher sind in Bereichen von Wärmebrücken Anforderungen an den Mindestwärmeschutz gestellt. Diese werden über den Temperaturfaktor $f_{\rm Rsi}$ beschrieben und müssen einen Wert von 0,7 einhalten, was einer zulässigen Oberflächentemperatur von mindestens 12,6 °C entspricht. Der Temperaturfaktor kann ausschließlich über Wärmebrückenberechnungen ermittelt werden und wird wie folgt berechnet:

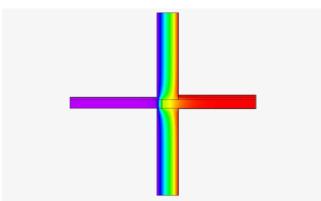
$$f_{Rsi} = \frac{\theta_{si} - \theta_{e}}{(\theta_{int} - \theta_{e})}$$

Dabei ist:

 θ_{si} in °C die Temperatur am Punkt der Innenoberfläche (θ - Theta)


 $\theta_{\rm e}^{\rm i}$ in °C die Außenlufttemperatur $\theta_{\rm int}$ in °C die Innenlufttemperatur

Für die Innenlufttemperatur wird bei der Berechnung des Temperaturfaktors 20 °C und für die Außenlufttemperatur -5 °C angenommen. Die Temperatur am Punkt der Innenoberfläche wird mittels Wärmebrückenberechnungen ermittelt.


Wärmebrücken am Balkon

Ein Balkon als auskragende Stahlbetonplatte ist das klassische Beispiel einer linienförmigen Wärmebrücke. Durchdringt eine stark wärmeleitende Stahlbetonplatte als "durchbetonierter" Balkon die Wärmedämmebene des Gebäudes, werden die Effekte der geometrisch bedingten Wärmebrücken durch die große Außenoberfläche und die Effekte der materialbedingten Wärmebrücke überlagert. Die Folgen sind niedrige raumseitige Oberflächentemperaturen. Bei Verwendung von

ISOPRO® Wärmedämmelementen im Anschlussbereich von Stahlbetonplatten an Gebäude werden Wärmebrücken auf ein technisch mögliches und bauphysikalisch notwendiges Minimum reduziert. Beispielhaft sind in den nachfolgenden Bildern die Farbverläufe der Temperatur in einem Balkonanschluss dargestellt. Ersichtlich ist hierbei, dass der Anschluss ohne thermische Trennung deutlich geringere Oberflächentemperaturen aufweist.

Temperaturverlauf bei durchdringender Stahlbetonplatte ohne thermische Trennung

Temperaturverlauf bei Stahlbetonplatte mit thermischer Trennung

Wärmeschutz und die Berücksichtigung von Wärmebrücken

Bei der energetischen Bilanzierung von Bauwerken werden Wärmeverluste durch Wärmebrücken über den so genannten pauschalen Wärmebrückenzuschlag ΔU_{WB} berücksichtigt. Dieser wird mit der Fläche der wärmeübertragenden

Umfassungsfläche multipliziert und ergibt den Wärmetransferkoeffizienten für Transmission über zweidimensionale Wärmebrücken. Dieser wird mit der nachfolgenden Gleichung beschrieben:

$$H_{T,WB} = \Delta U_{WB} \Sigma A_{j}$$

Dabei ist:

 $\Delta U_{_{WB}}$ der Wärmebrückenzuschlag

A_j die Fläche eines Bauteils j, das die Gebäudezone zur Außenluft, zu unbeheizten oder ungekühlten Zonen oder zum Erdreich hin begrenzt

Ohne Nachweis ist allgemein $\Delta U_{WB} = 0,10 \text{ W/(m}^2 \cdot \text{K)}$ zu setzen; bei Außenbauteilen mit innenliegender Dämmschicht und einbindender Massivdecke gilt $\Delta U_{WB} = 0,15 \text{ W/(m}^2 \cdot \text{K)}$. Mit Überprüfung und Einhaltung der Gleichwertigkeit mit den Ausführungsbeispielen der DIN 4108 Beiblatt 2 kann dann wie folgt verfahren werden:

- Wenn bei allen Anschlüssen die Merkmale und Kriterien nach Kategorie B erfüllt sind, kann der Wärmebrückenzuschlag zu $\Delta U_{WB} = 0.03 \text{ W/(m}^2 \cdot \text{K)}$ gesetzt werden.
- In allen anderen Fällen der DIN 4108 Beiblatt 2 darf der Wärmebrückenzuschlag zu $\Delta U_{WB} = 0.05 \, W/(m^2 \cdot K)$ gesetzt werden.
- Die Wärmebrückenwirkung kann alternativ projektbezogen ermittelt und mittels eines individuellen Wärmebrückenzuschlags ΔU_{WB} berücksichtigt werden.

Übersicht der Verfahren zur Berücksichtigung von Wärmebrücken in der energetischen Bilanzierung

	Verfahren 1	Verfahren 2	Verfahren 3
Beschreibung	Wärmebrücken werden nicht nachgewiesen. Lediglich der Mindestwärmeschutz nach DIN 4108-2:2013-02 muss eingehalten werden.	Die Wärmebrücken des Ge- bäudes werden konform zur DIN 4108 Beiblatt 2:2019-06 ausgeführt.	Ermittlung eines projekt- bezogenen individuellen Wärmebrückenzuschlags.
Nachweis	Ohne weiteren Nachweis.	Nachweis der Gleichwertigkeit nach Beiblatt 2 der DIN 4108:2019-06; ggfs. Korrektur nach DIN V 18599-2:2018-09.	Nachweis durch detail- lierte zweidimensionale Wärmebrückenberechnung.
Berücksichtigung	Pauschal: $\Delta U_{WB} = 0.10 \text{ W/(m}^2 \cdot \text{K)}$ bzw. $\Delta U_{WB} = 0.15 \text{ W/(m}^2 \cdot \text{K)}$	Pauschal: $\Delta U_{WB} = 0.05 \text{ W/(m}^2 \cdot \text{K)}$ $bzw.$ $\Delta U_{WB} = 0.03 \text{ W/(m}^2 \cdot \text{K)}$	$\Delta U_{WB} = (\Sigma \Psi i \cdot l i)/A$

Kenndaten Wärmeschutz

Die Verwendbarkeitsnachweise für ISOPRO® verlangen die Beurteilung der Tauwassergefahr bzw. die Unterschreitung der Tauwassertemperatur für die Bauteilkonstruktionen. Hierbei ist der rechnerische Nachweis nach DIN 4108-2, Abschnitt 6.2 zu führen.

Es ist der Temperaturfaktor an der ungünstigsten Stelle für die Mindestanforderung von f $_{\rm RSi}$ \geq 0,7 und $\theta_{\rm si}$ \geq 12,6 °C entsprechend DIN EN ISO 10211-2 nachzuweisen.

Korrektur des Wärmebrückenzuschlags

 $Kann\,keine\,Gleichwertigkeit\,zu\,einem\,oder\,mehreren\,im\,Beiblatt\,dargestellten\,Konstruktionsprinzipien\,der\,Kategorie\,A\,bzw.\,B\,hergestellt\,werden,\,darf\,der\,pauschale\,W\"{a}rmebr\"{u}ckenzuschlag\,\Delta U_{_{WB}}\,wie\,folgt\,korrigiert\,werden:$

$$\Delta U_{w_B} = \Sigma (\Delta \Psi_i \cdot l_i)/A + 0.05$$
 bzw. $\Delta U_{w_B} = \Sigma (\Delta \Psi_i \cdot l_i)/A + 0.03$

Dabei ist:

 $\Delta \Psi_{\rm i} \qquad {\rm Differenz\ des\ projektbezogenen\ temperaturbewerteten\ } \Psi\text{-Wertes\ zum\ jeweiligen\ im\ Beiblatt\ dargestellten\ } \\ \Psi\text{-Referenzwert;}$

l Länge der betreffenden Anschlusssituation;

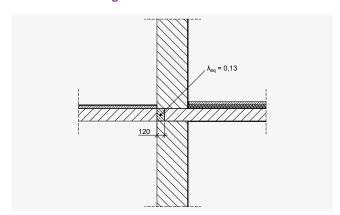
A Wärmeübertragende Umfassungsfläche des Gebäudes

Die vorbeschriebene Korrektur darf jedoch nur angewendet werden, wenn der berechnete Ψ -Wert größer ist als der jeweils entsprechende Referenzwert.

Werden nicht im Beiblatt enthaltene Wärmebrücken berücksichtigt, muss der Wärmebrückenzuschlag nach DIN V 18599-2:2018-09 ebenfalls korrigiert werden. Hierbei wird dann nicht die Differenz des projektbezogenen temperaturbewerteten Ψ-Wertes berücksichtigt, sondern der temperaturbewertete Ψ-Wert der betreffenden Anschlusssituation.

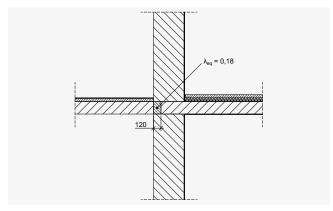
Beispiele für die Anwendung der Korrektur des Wärmebrückenzuschlags

Ist es nicht möglich, zu einem oder mehreren im Beiblatt dargestellten Konstruktionsprinzipien eine Gleichwertigkeit herzustellen, kann eine Korrektur des pauschalen Wärmebrückenzuschlags $\Delta U_{\rm WB}$ erfolgen.


Hält ein wärmedämmendes Balkonanschlusselement die Anforderungen an die äquivalente Wärmeleitfähigkeit $\lambda_{\rm eq} \leq$ 0,13 W/(m·K) aufgrund von hohen statischen Lasten nicht ein, kann aufgrund dessen entweder der Wärmebrückenzuschlag $\Delta U_{\rm WB} =$ 0,10 W/(m²·K) angesetzt oder der pauschale Wärmebrückenzuschlag $\Delta U_{\rm WB}$ korrigiert werden. Hierfür ist eine Wärmebrückenberechnung auf Grundlage von DIN EN ISO 10211:2018-03 zur Ermittlung des Ψ -Wertes für

den von den Vorgaben des Bbl. 2 abweichenden Anschlusses erforderlich. Anhand dessen und der Bildung einer Differenz zum angegebenen Referenzwert kann durch Multiplikation mit der vorhandenen Länge, bezogen auf die thermische Hüllfläche des Gebäudes, die Korrektur des pauschalen Wärmebrückenzuschlags $\Delta U_{\rm WB}$ ermittelt werden.

Beispielhaft ist die Berechnung des korrigierten ΔU_{wB} -Wertes für eine exemplarische Anschlusssituation dargestellt. Hierbei wird der betroffene Anschluss mit einer Länge von l = 20 m bei einer thermischen Hüllfläche des Gebäudes A = 350 m² angenommen.


Beispiel für die Korrektur von $\Delta U_{WB} = 0.03 \text{ W/(m}^2 \cdot \text{K)}$:

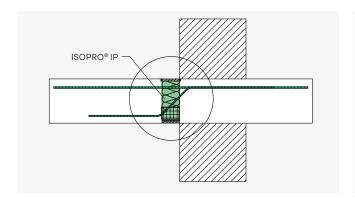
Referenzausführung nach Bbl. 2

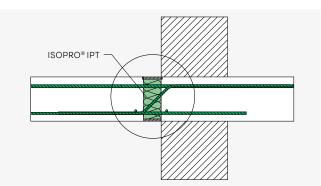
 $\Psi_{Ref} = 0.17 \, \text{W/(m·K)}$

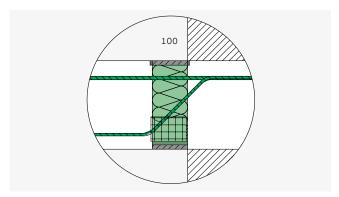
Tatsächliche Ausführung

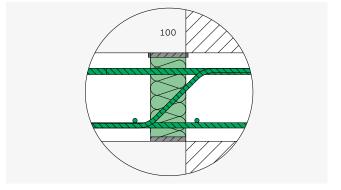
 $\Psi_{\text{vorh}} = 0.204 \text{ W/(m·K)}$

Ermittlung des korrigierten Wärmebrückenzuschlags:


Brandschutz


Brandschutzklassen REI 90/REI 120


Bei brandschutztechnischen Anforderungen an die Feuerwiderstandsklasse von Bauteilen sind alle ISOPRO® Elemente mit Betondrucklagern in der Feuerwiderstandsklasse REI 120 und alle ISOPRO® Elemente mit Stahldruckebene in der Feuerwiderstandsklasse REI 90 verfügbar(erfüllen REI 120, wenn eine Abminderung der Traglast auf maximal 85% im GZT berücksichtigt wird).


Hierzu werden die ISOPRO® Elemente an der Ober- und Unterseite werkseitig mit Brandschutzplatten ausgerüstet. Die Kurzelemente IPQS / IPQZ / IPTQQS / IPTA / IPTF / IPO sowie die Elemente für Balken und Wände IMTS und IMTW werden werkseitig umlaufend mit Brandschutzplatten hergestellt.

Voraussetzung für die Klassifizierung in REI 90/REI 120 ist, dass die angrenzenden Bauteile den Anforderungen an die jeweilige Feuerwiderstandsklasse genügen. Wird für den Brandfall auch Raumabschluss (E) und Hitzeabschirmung (I) gefordert, ist bei punktuellem Einsatz der ISOPRO® Elemente darauf zu achten, als Zwischendämmung ISOPRO® Z-ISO FP1 in EI 120 einzusetzen.

ISOPRO® Element mit Betondrucklagern in REI 120: Ausführung mit Brandschutzplatten oben überstehend, unten bündig

ISOPRO® Element mit Stahldruckstäben in REI 90: Ausführung mit Brandschutzplatten oben überstehend, unten bündig

Brandschutzklassen

Bauteile mit ISOPRO® Elementen können folgende Brandschutzklassen erreichen:

IP, IP 2-teilig, IP ECK, IP VAR., IPQ, IPZQ, IPQS, IPQZ, IPH, IPE, IPO IPT, IPT ECK,
IPTQS, IPTQQ, IPTQQS,
IPTD, IPTA, IPTF, IPTS, IPTW

IP Z-ISO FP1

Brandschutzklasse	REI 120	REI 90*	El 120
-------------------	---------	---------	--------

^{*} Die Feuerwiderstandsklasse bei den Elementen mit Stahldruckebene ist REI 90. Sie beträgt REI 120, wenn der Reaktionsbeiwert η_{ii} (gemäß EN 1992-1-2, Abschnitt 2.4.2) auf 0,6 reduziert wird – dies entspricht einer Ausnutzung von ≤ 85% in GZT (Grenzzustand der Tragfähigkeit).

Brandschutzvorschriften für Balkone

Gemäß DIN EN 13501-2:2010-02 (1a) gelten Balkone als tragende Bauteile ohne raumabschließende Funktion. In der Musterbauordnung §31 werden bei Balkonen keine konkreten Anforderungen an den Brandschutz gestellt. Folglich sind die Anforderungen an den Brandschutz im Einzelfall zu prüfen.

Brandschutzvorschriften für Laubengänge

Gemäß DIN EN 13501-2:2010-02 (1a) gelten Laubengänge als tragende Bauteile ohne raumabschließende Funktion. Sofern Laubengänge keine Funktion als "notwendiger Flur" haben werden gemäß Musterbauordnung §31 keine konkreten Anforderungen an den Brandschutz gestellt. Notwendige Flure müssen in Abhängigkeit der Gebäudeklasse feuerbeständig, hochfeuerhemmend oder feuerhemmend ausgeführt werden. Ob eine Ausführung des Wärmedämmanschlusses raumabschließend erfolgen muss, ist im Einzelfall zu prüfen.

Anforderungen an Laubengänge als notwendige Flure

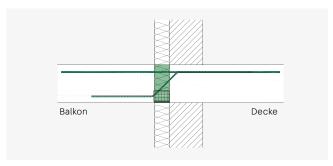
Gebäudeklasse nach Musterbauordnung §2			DIN 4102-2
1	Tragend und raumabschließend	Keine Angabe	Keine Angabe
2	Tragend und raumab- schließend feuerhemmend	REI 30	F 30-B
3	Tragend und raumab- schließend feuerhemmend	REI 30	F 30-AB (raumabschließend)
4	Tragend und raum- abschließend hochfeuerhemmend	REI 60	F 60-AB (raumabschließend)
5	Tragend und raumab- schließend feuerbeständig	REI 90	R 90-AB (raumabschließend)

Brandriegel*

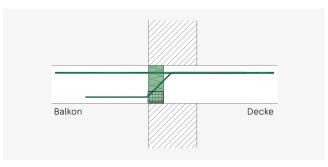
Brandriegel sind bei Gebäuden ab 3 Geschossen und einem WDVS aus EPS-Dämmstoffen mit einer Dicke größer als 100 mm in jedem zweiten Geschoss erforderlich. Dies wird durch die vollständige, horizontale Unterbrechung der Dämmung erreicht. Balkone, Loggien und Laubengänge, die ein WDVS vollständig horizontal unterbrechen, können die Funktion einer Brandsperre übernehmen, so dass in diesem Bereich auf die zusätzliche Ausführung von Brandriegeln verzichtet werden

kann. Der Brandriegel muss jedoch seitlich an die Kragplatten anschließen, so dass die brandschutztechnische Unterbrechung der Dämmung durchgängig ist. In der beschriebenen Situation müssen ISOPRO® Elemente in den Brandschutzausführungen REI 120 oder REI 90 eingesetzt werden.

*Quelle: "Technische Systeminformation WDVS und Brandschutz" Fachverband Wärmedämm-Verbundsysteme, März 2016

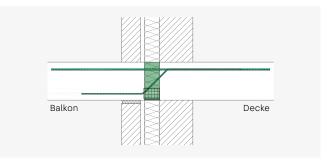

Hinweise

Bei Anforderungen an den Brandschutz ist darauf zu achten, dass auch eine mögliche Dämmung zwischen einzelnen ISOPRO® Elementen den Brandschutzanforderungen genügt. Die Ausführung kann mit ISOPRO® Z-ISO FP1 in EI 120 erfolgen.

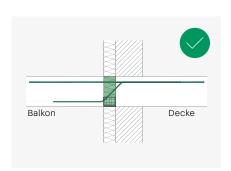

Einbauhinweise

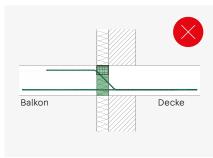
Lage im Bauteil

Um Wärmebrücken sicher zu verhindern erfolgt der Einbau der ISOPRO® Elemente in der Dämmebene.

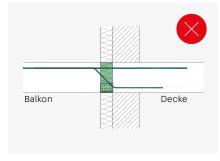

ISOPRO® IP - Einbauschnitt Wärmedämmverbundsystem

ISOPRO® IP - Einbauschnitt einschaliges Mauerwerk


ISOPRO® IP - Einbauschnitt Glasfassade

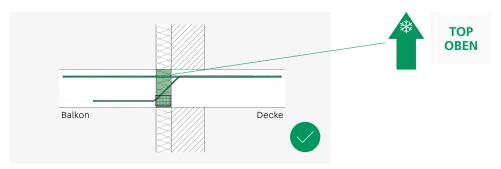

ISOPRO®IP - Einbauschnitt zweischaliges Mauerwerk

Einbaurichtung


Beim Einbau ist auf die richtige Einbaurichtung Balkonseite/ Deckenseite sowie oben/unten zu achten. Bei korrektem Einbau liegen die Zugstäbe oben und das Drucklager/die Druckstäbe unten. Der Querkraftstab verläuft auf der Balkonseite unten beginnend diagonal durch das ISOPRO® Element und endet auf der Deckenseite oben.

ISOPRO®IP - richtiger Einbau

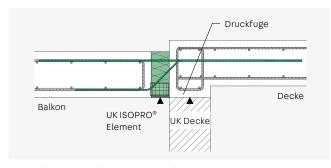
ISOPRO® IP – falscher Einbau, Zugstab muss oben liegen

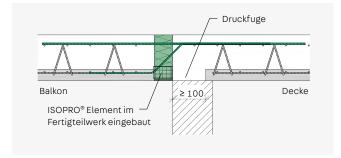


ISOPRO® IP – falscher Einbau, Querkraftstab muss auf der Balkonseite unten liegen

Einbauhinweise – Druckfuge

Einbaurichtung


Beim Einbau ist zwingend die auf dem Etikett angegebene Einbaurichtung zu beachten. Die Einbaurichtung ist durch die Angabe "oben" und mit einem Pfeil in Richtung der Balkonseite (des Kaltbereichs) eindeutig auf jedem Element markiert.



ISOPRO® IP – richtiger Einbau

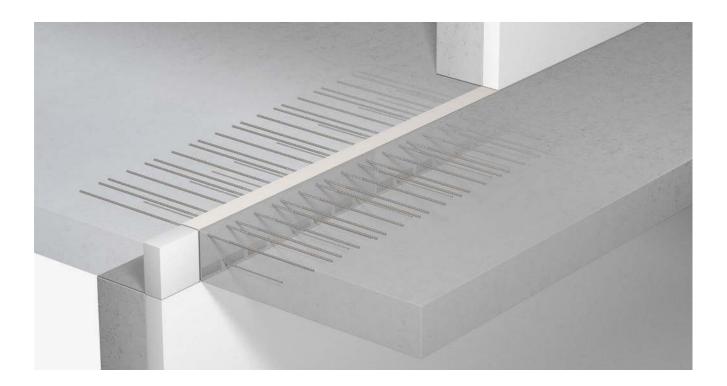
Druckfuge

- Beim Einbau ist auf den Formschluss des Drucklagers mit Frischbeton zu achten. Hierzu ist eine Druckfuge von ≥ 100 mm vorzusehen, die Betonierabschnittsgrenzen sind entsprechend zu wählen.
- Zwischen ISOPRO® Elementen und Fertigteilen bzw.
 Elementplatten ist ein Ortbeton- bzw. Vergussstreifen
 ≥ 100 mm vorzusehen.

ISOPRO® Elemente in Verbindung mit Elementplatten

Beratung

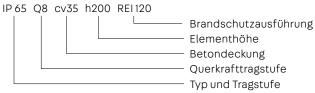
Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:


T +49 7742 9215-300 technik-hbau@pohlcon.com

Auskragende Bauteile

ISOPRO® IP und IPT

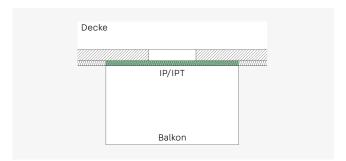
Elemente für auskragende Balkone

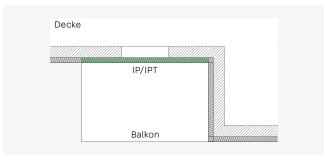

ISOPRO® IP

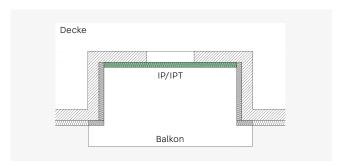
- · Zur Übertragung von negativen Momenten sowie positiven und ausführungsabhängig (QX) auch negativen Querkräften
- Druckebene mit Betondrucklagern
- Tragstufen IP 10 bis IP 100
- Querkrafttragstufen Standard, Q8, Q10, Q12, Q8X und Q10X
- Betondeckung der Zugstäbe cv35 oder cv50
- ullet Elementhöhen in Abhängigkeit der Querkrafttragstufe \mathbf{h}_{\min} ab 160 mm
- Feuerwiderstandsklasse REI 120 verfügbar

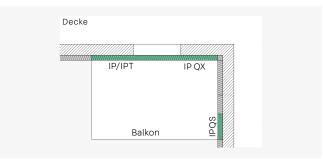
ISOPRO® IPT

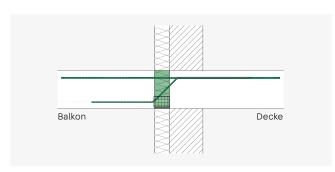
- Druckebene mit Stahldruckstäben
- Tragstufen IPT 110 und IPT 150
- Querkrafttragstufen Q10, Q12 und Q14
- Betondeckung der Zugstäbe cv35 oder cv50
- $\bullet~$ Elementhöhen in Abhängigkeit der Querkrafttragstufe $\rm h_{\rm min}$ ab 180 mm
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)

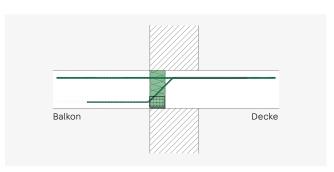

Typenbezeichnung

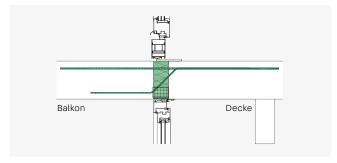

Anwendung – Elementanordnung

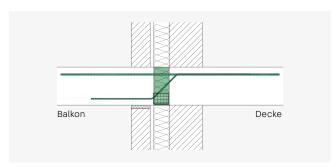

In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


ISOPRO® IP/IPT - Auskragende Balkone


ISOPRO® IP/IPT - Auskragende Balkone in Fassadenversprüngen


ISOPRO® IP/IPT - Auskragende Balkone in Fassadenrücksprüngen


ISOPRO® IP/IPT in Kombination mit IP QX und IPQS bei Inneneckbalkonen


ISOPRO® IP - Einbauschnitt Wärmedämmverbundsystem

ISOPRO® IP - Einbauschnitt einschaliges Mauerwerk

 ${\tt ISOPRO}^{\otimes}{\tt IP-Einbauschnitt\,Glasfassaden}$

 ${\tt ISOPRO} @ {\tt IP-Einbauschnitt} \ zweischaliges \ Mauerwerk$

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente \mathbf{m}_{Rd} in kNm/m

···

Elementhöhe mm in Abhängigkeit von cv mm Beton ≥ C25/30

35	50	IP 10	IP 15	IP 20	IP 25	IP 35	IP 45
160	_	9,0	13,2	15,4	21,7	23,8	28,0
_	180	9,5	14,0	16,2	22,9	25,1	29,5
170	_	10,0	14,8	17,1	24,1	26,5	31,1
_	190	10,5	15,5	18,0	25,3	27,8	32,7
180	-	11,1	16,3	18,9	26,6	29,2	34,3
_	200	11,6	17,1	19,8	27,8	30,5	35,9
190	_	12,2	17,9	20,7	29,1	31,9	37,5
_	210	12,7	18,6	21,6	30,3	33,3	39,1
200	_	13,3	19,4	22,5	31,6	34,7	40,7
_	220	13,8	20,2	23,4	32,9	36,0	42,3
210	-	14,4	21,0	24,3	34,2	37,5	44,0
_	230	14,9	21,8	25,2	35,4	38,8	45,6
220	-	15,5	22,6	26,2	36,8	40,3	47,3
_	240	16,0	23,4	27,1	38,0	41,7	48,9
230	_	16,6	24,3	28,1	39,4	43,1	50,6
_	250	17,2	25,1	29,0	40,6	44,5	52,2
240	_	17,8	25,9	30,0	42,0	46,0	53,9
250	_	18,9	27,6	31,9	44,7	48,9	57,3

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

Tragstufe	$\mathbf{h}_{\scriptscriptstyle{min}}$ mm	IP 10	IP 15	IP 20	IP 25	IP 35	IP 45
Standard	160	34,8	34,8	34,8	43,5	43,5	43,5
Q8	160	92,7	92,7	92,7	92,7	92,7	92,7
Q10	170	144,9	144,9	144,9	144,9	144,9	144,9
Q12	180	208,6	208,6	208,6	208,6	208,6	208,6
Q8X	160	+61,8/-46,4	+61,8/-46,4	+61,8/-46,4	+61,8/-46,4	+61,8/-46,4	+61,8/-46,4
Q10X	170	+96,6/-72,5	+96,6/-72,5	+96,6/-72,5	+96,6/-72,5	+96,6/-72,5	+96,6/-72,5

Abmessungen und Belegung

	IP 10	IP 15	IP 20	IP 25	IP 35	IP 45
Elementlänge mm	1.000	1.000	1.000	1.000	1.000	1.000
Zugstäbe	4 Ø 8	6 Ø 8	7 Ø 8	10 Ø 8	11 Ø 8	13 Ø 8
Zugstäbe QX	5 Ø 8	7 Ø 8	8 Ø 8	12Ø8	13 Ø 8	15 Ø 8
Drucklager	4	4	4	4	5	5
Querkraftstäbe Standard	4 Ø 6	4 Ø 6	4 Ø 6	5 Ø 6	5 Ø 6	5 Ø 6
Querkraftstäbe Q8	6 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Querkraftstäbe Q10	6 Ø 10	6 Ø 10	6 Ø 10	6Ø10	6 Ø 10	6 Ø 10
Querkraftstäbe Q12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12
Querkraftstäbe Q8X	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8
Querkraftstäbe Q10X	4Ø10/3Ø10	4 Ø 10/3 Ø 10	4Ø10/3Ø10	4Ø10/3Ø10	4Ø10/3Ø10	4Ø10/3Ø10

Bemessungswerte der aufnehmbaren Momente $\rm m_{Rd}^{}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm

Beton ≥ C25/30 Beton ≥ C30/37

	·						
35	50	IP 50	IP 55	IP 65	IP 75	IP 90	IP 100
160	_	30,1	36,3	39,5	_	_	_
_	180	31,7	38,3	41,7	_	_	_
170	-	33,4	40,4	44,0	47,6	51,1	57,1
_	190	35,1	42,4	46,2	49,9	53,6	60,0
180	_	36,8	44,6	48,5	52,4	56,1	63,0
_	200	38,5	46,6	50,7	54,8	58,6	65,9
190	_	40,3	48,7	53,0	57,3	61,2	68,9
_	210	42,0	50,8	55,3	59,7	63,7	71,8
200	-	43,7	52,9	57,6	62,2	66,2	74,7
_	220	45,5	55,0	59,8	64,7	68,8	77,6
210	_	47,2	57,2	62,2	67,2	71,3	80,4
_	230	49,0	59,2	64,4	69,6	73,8	83,3
220	_	50,8	61,4	66,8	72,2	76,3	86,1
_	240	52,5	63,5	69,1	74,6	78,9	89,0
230	_	54,3	65,7	71,5	77,2	81,4	91,8
_	250	56,1	67,8	73,8	79,7	83,9	94,7
240	_	57,9	70,1	76,1	82,3	86,5	97,5
250	_	61,5	74,4	80,5	87,4	91,5	103,2

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

Tragstufe	h	_{nin} mm	IP 50	IP 55	IP 65	IP 75	IP 90	IP 100
Standard		160	43,5	43,5	43,5	_	_	-
Q8		160	92,7	92,7	92,7	_	_	_
Q10		170	144,9	144,9	144,9	144,9	144,9	144,9
Q12		180	208,6	208,6	208,6	208,6	208,6	208,6
Q8X		160	+61,8/-46,4	+61,8/-46,4	+61,8/-46,4	_	_	-
Q10X	170	180	+96,6/-72,5	+96,6/-72,5	+96,6/-72,5	+139,0/-72,5	+139,0/-72,5	+139,0/-72,5

Abmessungen und Belegung

	IP 50	IP 55	IP 65	IP 75	IP 90	IP 100
Elementlänge mm	1.000	1.000	1.000	1.000	500 + 500 (QX Ele	emente 1.000 mm)
Zugstäbe	14 Ø 8	11 Ø 10	12 Ø 10	13 Ø 10	10 Ø 12	12 Ø 12
Zugstäbe QX	16Ø8	12 Ø 10	13 Ø 10	14 Ø 10	11 Ø 12	12 Ø 12
Drucklager	6	7	7	8	8	8
Querkraftstäbe Standard	5 Ø 6	5 Ø 6	5 Ø 6	-	_	_
Querkraftstäbe Q8	6Ø8	6Ø8	6 Ø 8	_	_	_
Querkraftstäbe Q10	6 Ø 10	6Ø10	6 Ø 10	6 Ø 10	6Ø10	6 Ø 10
Querkraftstäbe Q12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12	6 Ø 12
Querkraftstäbe Q8X	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	4 Ø 8/3 Ø 8	-	_	_
Querkraftstäbe Q10X	4Ø10/3Ø10	4Ø10/3Ø10	4Ø10/3Ø10	4 Ø 12/3 Ø 10	4 Ø 12/3 Ø 10	4Ø12/3Ø10

Bemessungswerte der aufnehmbaren Momente $m_{_{Rd}}^{}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm


35	50	IPT 110	IPT 150
180	_	68,3	89,2
_	200	71,6	93,6
190	_	75,0	98,0
_	210	78,3	102,4
200	_	81,7	106,7
_	220	85,0	111,1
210	_	88,3	115,5
_	230	91,7	119,8
220	_	95,0	124,2
_	240	98,4	128,6
230	_	101,7	133,0
_	250	105,1	137,3
240	-	108,4	141,7
250	_	115,1	150,5

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

Tragstufe	h	_{min} mm	IPT 110	IPT 150
Q10		170	96,6	96,6
Q12	170	180	144,9	139,1
Q14	180	190	208,6	189,3

Abmessungen und Belegung

	IPT 110	IPT 150
Elementlänge mm	500 + 500	500 + 500
Zugstäbe	10 Ø 14	14 Ø 14
Druckstäbe	14 Ø 12	18 Ø 12
Querkraftstäbe Q10	4 Ø 10	4 Ø 10
Querkraftstäbe Q12	6 Ø 10	4 Ø 12
Querkraftstäbe Q14	6 Ø 12	4 Ø 14

Verformung und Überhöhung

Verformung

Auskragende Stahlbetonkonstruktionen werden bei ihrer Erstellung für die voraussichtlich auftretende Verformung überhöht. Sind diese Konstruktionen mit ISOPRO® Elementen thermisch getrennt, so wird für die Ermittlung der Überhöhung die Verformung infolge ISOPRO® Element selbst mit der Verformung infolge Plattenkrümmung nach DIN EN 1992-1-1/NA überlagert. Hierbei ist darauf zu achten, die erforderliche Überhöhung in Abhängigkeit der planmäßigen Entwässerungsrichtung auf- beziehungsweise abzurunden.

Wird an der Gebäudefassade entwässert, ist der Wert aufzurunden, bei Entwässerung am Kragarmende ist abzurunden. Wir empfehlen den Nachweis im Grenzzustand der Gebrauchstauglichkeit für die quasi-ständige Lastfallkombination zu führen ($\gamma_{\rm G}=1,0,\gamma_{\rm Q}=1,0,\psi^2=0,3$). In den unten stehenden Tabellen sind die Verformungsfaktoren tan α zur Ermittlung der Verformung infolge ISOPRO® ersichtlich.

Verformung infolge des Kragplattenanschlusses ISOPRO®

$$w = \tan \alpha \cdot (m_{Ed}/m_{Rd}) \cdot l_k \cdot 10$$

mit

w = Verformung am Kragarmende mm

 $tan \alpha$ = Verformungsfaktor, siehe Produktkapitel

m_{Ed} = Biegemoment für die Ermittlung der Überhöhung infolge des ISOPRO®
 Elements. Die maßgebende Lastfallkombination im Grenzzustand der Gebrauchstauglichkeit wird durch den Planer getroffen.

m_{Rd} = Widerstandsmoment des ISOPRO® Elementes, siehe Produktkapitel

l_k = Systemlänge m

Verformungsfaktor tan α für Beton ≥ C 25/30

Тур	Betondeckung cv mm	5								Eleme	Elementhöhe h mm	
		160	170	180	190	200	210	220	230	240	250	
IP 10 – 50	35	0,94	0,85	0,79	0,72	0,67	0,63	0,59	0,56	0,53	0,50	
	50	_	-	0,89	0,81	0,75	0,70	0,65	0,61	0,57	0,54	
IP 55 – 90	35	1,12	1,01	0,93	0,85	0,79	0,74	0,69	0,65	0,61	0,58	
	50	_	-	1,06	0,97	0,89	0,82	0,76	0,71	0,67	0,63	
IPT 110, IPT 150	35	_	-	1,70	1,55	1,42	1,32	1,22	1,15	1,08	1,00	
	50	-	-	-	_	1,62	1,48	1,37	1,27	1,18	1,15	

Verformungsfaktor tan α für Beton ≥ C 30/37

Тур	Betondeckung cv mm						Eleme	Elementhöhe h mm			
		160	170	180	190	200	210	220	230	240	250
IP 100	35	-	1,04	0,95	0,87	0,81	0,75	0,70	0,66	0,62	0,58
IP 100	50		_	1,09	0,99	0,91	0,84	0,78	0,72	0,68	0,64

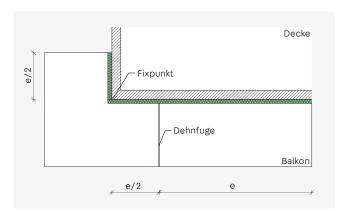
Biegeschlankheit - Dehnfugenabstand

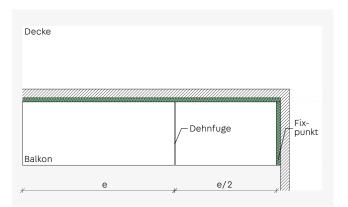
Biegeschlankheit

Die Biegeschlankheit ist definiert als Verhältnis der statischen Höhe d der Balkonplatte zur Auskragungslänge l_k . Die Biegeschlankheit einer Platte hat Auswirkungen auf deren Schwingungsverhalten. Daher wird empfohlen, die Biegeschlankheit

für auskragende Stahlbetonkonstruktionen gemäß DIN EN 1992-1-1 auf einen Maximalwert von $l_{\rm k}/d=14$ zu begrenzen. Daraus resultieren die empfohlenen maximalen Auskragungslängen $l_{\rm k}$:

Betondeckung

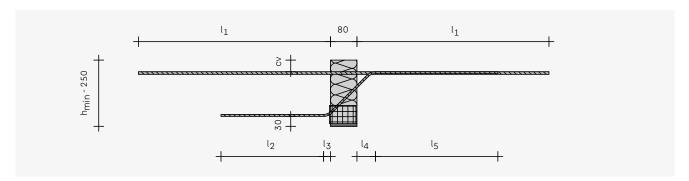

Empfehlung für max. l, m in Abhängigkeit der Elementhöhe h mm


	160	170	180	190	200	210	220	230	240	250
cv35	1,68	1,82	1,96	2,10	2,24	2,38	2,52	2,66	2,80	2,94
cv50	1,47	1,61	1,75	1,89	2,03	2,17	2,31	2,45	2,59	2,73

Dehnfugenabstand

Überschreiten die Bauteilabmessungen den maximal zulässigen Dehnfugenabstand, so sind senkrecht zur Dämmebene Dehnfugen anzuordnen. Der maximal zulässige Dehnfugenabstand e ist abhängig vom maximal über die Dehnfuge hinweg geführten Stabdurchmesser und somit typenabhängig.

Durch Fixpunkte wie eine Auflagerung über Eck oder die Verwendung von ISOPRO® IPH oder IPE Elementen kommt es zu erhöhten Zwängungen, wodurch der maximal zulässige Dehnfugenabstand auf e/2 reduziert werden muss. Der halbe maximale Dehnfugenabstand wird immer vom Fixpunkt aus gemessen.

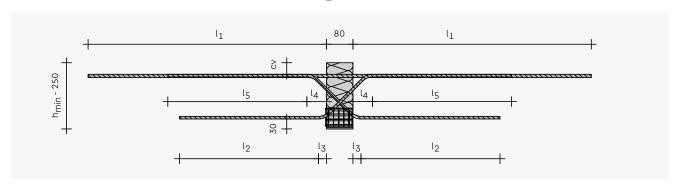

Dehnfugenanordnung bei unterschiedlichen Balkonsystemen

Maximal zulässiger Dehnfugenabstand

		IP 10 - 65		IP 75 – 100	IPT 110, IPT 150
Querkrafttragstufe	Standard, Q8, Q10, Q8X, Q10X	Q12	Q10	Q12, Q10X	Q10, Q12, Q14
Fugenabstand e m	13,0	11,3	13,0	11,3	10,1

Elementaufbau

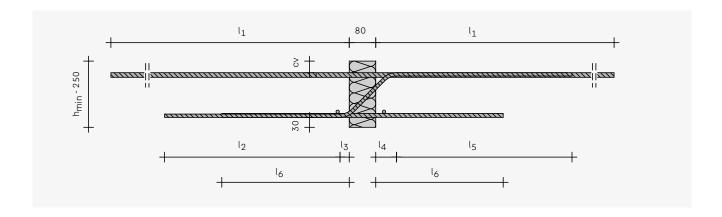
ISOPRO® IP 10 bis IP 100 - Positive Querkräfte



Länge Zugstab mm	IP 10 – IP 50	IP 55 – IP 75	IP 90 – IP 100
l ₁	520	630	730

Länge Querkraftstab			Querkraftt	ragstufe
mm	Standard	Q6/Q8	Q10	Q12
l ₂	250	420	530	630
l ₃	24	28	33	42
l ₄ '	13-93	15-95	28-98	35-95
l ₅	320	420	530	630
h _{min}	160	160	170	180

^{*} abhängig von der Höhe


ISOPRO® IP 10 bis IP 100 – Positive und negative Querkräfte

Länge Zugstab mm	IP 10 – IP 50	IP 55 – IP 75	IP 90 – IP 100
l ₁	520	630	730

Länge Querkraftstab		Querkrafttragstufe
mm	Q8X	Q10X
l ₂	420	530
l ₃	28	33
l ₄	15-95	28-98
l ₅	420	530
h _{min}	160	170

^{*} abhängig von der Höhe

ISOPRO® IPT 110

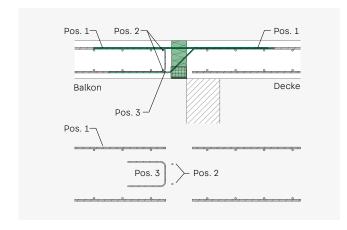
Länge Zug- und Druckstab mm	IPT 110
Zugstab l ₁	860
Druckstab l ₆	405

Länge Querkraftstab		Querkrafttragstufe
mm	Q10/Q12	Q14
l ₂	530	630
l ₃	33	42
l ₄ *	530	630
l ₅	28-98	35-95
h _{min}	170	180

^{*} abhängig von der Höhe

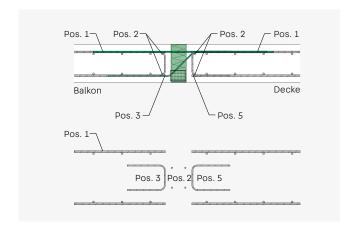
ISOPRO® IPT 150

Länge Zug- und Druckstab mm	IPT 150
Zugstab l ₁	860
Druckstab l6	405

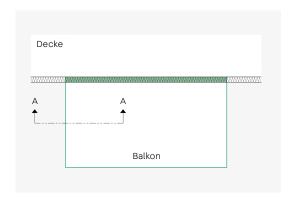

Länge Querkraftstab		Querk	rafttragstufe
mm	Q10	Q12	Q14
l ₂	530	630	740
l ₃	33	42	47
l ₄ *	530	630	740
l ₅	28-98	35-95	58-98
h _{min}	170	180	200

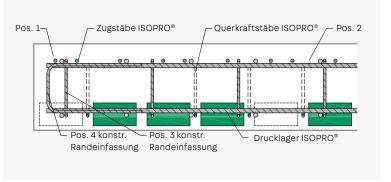
^{*} abhängig von der Höhe

Bauseitige Bewehrung


ISOPRO® IP 10 bis IP 100

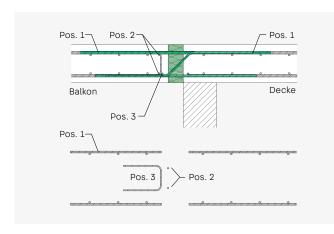
Direkte Lagerung


- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO® Element
 Seite 42
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)

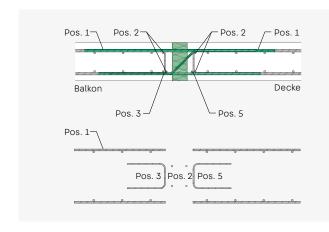

Indirekte Lagerung

- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO® Element
 Seite 42
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Pos. 5: Rand- bzw. Aufhängebewehrung Seite 42

Randeinfassung am freien Balkonrand

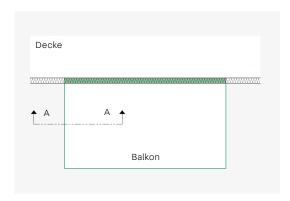


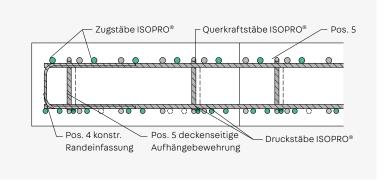
ISOPRO® IP - Schnitt A-A


ISOPRO® IPT 110 bis IPT 150

Direkte Lagerung

- Pos. 1: Anschlussbewehrung für das ISOPRO® Element
 Seite 42
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)


Indirekte Lagerung



- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO® Element

 Seite 42
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Pos. 5: Rand- bzw. Aufhängebewehrung Seite 42

Randeinfassung am freien Balkonrand

ISOPRO®IPT - Schnitt A-A

Anschlussbewehrung Pos. 1

ISOPRO® IP 10 bis IP 100 und IPT 110 bis IPT 150

ISOPRO®	a _{s,erf} cm²/m	Vorschlag Betonstahl B500
IP 10	2,37	5 Ø 8
IP 15	3,47	7 Ø 8
IP 20	4,00	8 Ø 8
IP 25	5,62	12 Ø 8
IP 35	6,14	13 Ø 8
IP 45	7,20	15 Ø 8
IP 50	7,73	16 Ø 8
IP 55	9,40	12 Ø 10
IP 65	10,17	13 Ø 10
IP 75	11,04	14 Ø 10
IP 90	11,62	11 Ø 12
IP 100	13,11	12 Ø 12
IPT 110	15,39	10 Ø 14
IPT 150	20,10	14 Ø 14

Rand- bzw. Aufhängebewehrung bei indirekter Lagerung Pos. 5

ISOPRO® IP 10 bis IP 100, IPT 110 UND IPT 150

Querkrafttragstufe	IP 10 – 20	IP 25 – 65	IP 75 – 100	IPT 110	IPT 150
	a _{s,erf} cm²/m				
Standard	1,13	1,00	-		-
Q8	2,13	2,13	_	_	_
Q10	3,33	3,33	3,33	2,22	2,22
Q12	4,79	4,79	4,79	3,33	3,20
Q14	_	_	-	4,79	4,35
Q8X	1,42	1,42	_	_	_
Q10X	2,22	2,22	3,20	-	-

Bemessungsbeispiel


Elementauswahl, Verformung und Überhöhung

System:

Kragarm frei auskragend
Kragarmlänge I_k = 2,0 m
Plattendicke Balkon = 180 mm
Betondeckung cv35
Beton C25/30 Balkon und Decke

Lastannahmen:

Eigengewicht $g_k = 4,50 \text{ kN/m}^2$ Auflast/Belag $g_k = 1,50 \text{ kN/m}^2$ Verkehrslast $q_k = 4,00 \text{ kN/m}^2$ Randlast $V_k = 1,50 \text{ kN/m}$ Randmoment $M_k = 0,00 \text{ kNm/m}$

Schnittkräfte:

```
\begin{split} & m_{_{Ed}} = \ (g_{_{k}} \cdot 1,35 + q_{_{k}} \cdot 1,5) \cdot l_{_{k}}^2 / 2 + (G_{_{k}} \cdot 1,35) \cdot l_{_{k}} \\ & v_{_{Ed}} = \ (g_{_{k}} \cdot 1,35 + q_{_{k}} \cdot 1,5) \cdot l_{_{k}} + (G_{_{k}} \cdot 1,35) \\ & m_{_{Ed}} = \ (6,00 \cdot 1,35 + 4,00 \cdot 1,5) \cdot 2,00^2 / 2 + (1,5 \cdot 1,35) \cdot 2,00 = \underline{32,25 \ kNm/m} \\ & v_{_{Ed}} = \ (6,00 \cdot 1,35 + 4,00 \cdot 1,5) \cdot 2,00 + (1,5 \cdot 1,35) = \underline{30,23 \ kN/m} \end{split}
```

Bemessung:

Gewählt: IP 50, cv35, h = 180 mm $m_{Rd} = 36,80 \text{ kNm/m} \ge 32,25 \text{ kNm/m} \text{ (Seite 33)} \\ V_{Rd} = 43,50 \text{ kN/m} \ge 30,23 \text{ kN/m}$

Verformung infolge des Wärmedämmelements:

Lastfallkombination quasi ständig $\Psi_2 = 0.30$, $\gamma_0 = 1.00$, $\gamma_0 = 1.00$

 $\begin{array}{lll} m_{\text{Ed,perm}} &=& m_{gk} + m_{qk} \cdot \Psi_2 \\ m_{\text{Ed,perm}} &=& (g_k + q_k \cdot \Psi_2) \cdot l_k^2 / 2 + G_k \cdot l_k \\ m_{\text{Ed,perm}} &=& (6.00 + 4.00 \cdot 0.3) \cdot 2.00^2 / 2 + 1.50 \cdot 2.00 = \underline{17.40 \text{ kNm/m}} \\ w_1 &=& \tan \alpha \cdot (m_{\text{Ed,perm}} / m_{\text{Rd}}) \cdot l_k \cdot 10 \\ \tan \alpha &=& 0.79 \text{ (Seite 36)} \\ w_1 &=& 0.79 \cdot (17.40 / 36.80) \cdot 2.00 \cdot 10 = \underline{7.47 \text{ mm (~ 7.00 mm)}}^* \end{array}$

 $^{\circ}$ Verformung infolge des Wärmedämmelements. Zu dieser Verformung am Kragarmende ist vom Tragwerksplaner die Verformung aus Plattenkrümmung w_2 zu addieren. Die Verformung aus Plattenkrümmung w_2 ist in der Regel wesentlich kleiner als die Verformung aus den Wärmedämmelementen (Faustformel w_2 ~ 0,25 \cdot $w_{\rm I}$).

Überhöhung:

Fall 1) Entwässerung Richtung Kragarmende gewählt:


Überhöhung 7,00 mm (Abrundung)

Fall 2) Entwässerung Richtung Gebäudeseite gewählt:

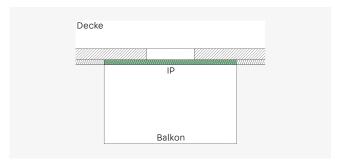
Überhöhung 10,00 mm (Aufrundung)

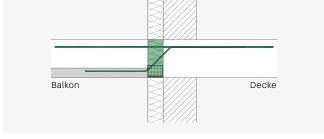
ISOPRO® IP 2-teilig


Elemente für auskragende Balkone

ISOPRO® IP 2-teilig

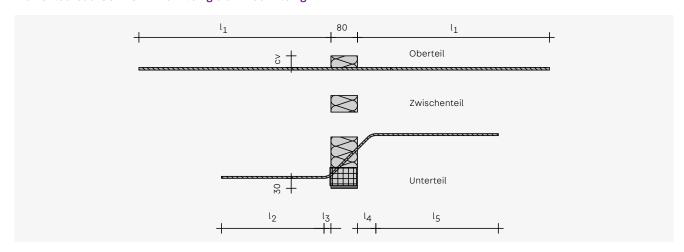
- 2-teilige Elemente zum Einbau des Unterteils in Elementplatten im Fertigteilwerk und Aufsetzen des Oberteils auf der Baustelle
- Zur Übertragung von negativen Momenten und positiven Querkräften
- Druckebene mit Betondrucklagern
- Tragstufen IP 10 2-teilig bis IP 100 2-teilig
- Querkrafttragstufen Standard, Q8, Q10, Q12
- Betondeckung der Zugstäbe cv35 oder cv50
- Elementhöhen in Abhängigkeit der Querkrafttragstufe ab 160 mm
- Feuerwiderstandsklasse REI 120 verfügbar


Typenbezeichnung



Anwendung – Elementaufbau

In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.



ISOPRO® IP 2-teilig - Auskragende Balkone

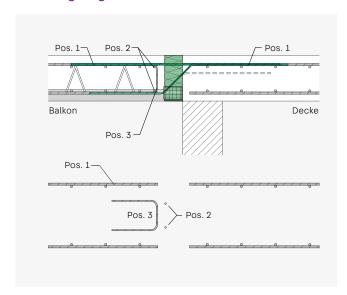
ISOPRO® IP 2-teilig – Einbauschnitt Wärmedämmverbundsystem

Elementaufbau ISOPRO® IP 10 2-teilig bis IP 100 2-teilig

Länge Zugstab mm	IP 10 – IP 50	IP 55 – IP 75	IP 90 – IP 100	
l ₁	520	630	730	

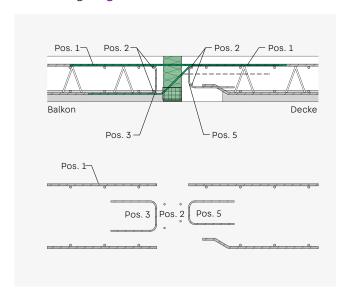
Länge Querkraftstab	Querkrafttragstufe					
mm	Standard	Q8	Q10	Q12		
l ₂	250	420	530	630		
l ₃	24	28	33	42		
ι ₄ .	13-93	15-95	28-98	35-95		
l ₅	320	420	530	630		
h _{min}	160	160	170	180		

^{*} abhängig von der Höhe


Bemessung und Aufbau der 2-teiligen Elemente

- Bemessung und Belegung der Elemente identisch zu den entsprechenden einteiligen Elementen – Seite 32 – 34
- Ausführung des Dämmkörpers bestehend aus einem Unterteil und einem Oberteil
- Fertigteilwerke haben die Möglichkeit, Elemente in gängigen Höhen zu bestellen und diese bei Bedarf durch Einfügen von Zwischenstreifen zu größeren Höhen aufzudoppeln. Der Querkraftstab wird auf die ursprünglich gewählte Elementhöhe ausgelegt und liegt bei Aufdopplung nicht in der Zugebene des Elementes.
- Überhöhung, Biegeschlankheit und maximal zulässige Dehnfugenabstände – Seite 36 – 37

Bauseitige Bewehrung


ISOPRO® IP 10 2-teilig bis IP 100 2-teilig

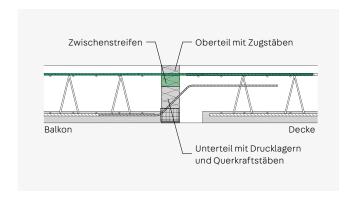
Direkte Lagerung

- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO® Element
 Seite 47
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)

Indirekte Lagerung

- Pos. 1: Anschlussbewehrung für das ISOPRO® Element
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Pos. 5: Rand- bzw. Aufhängebewehrung Seite 47

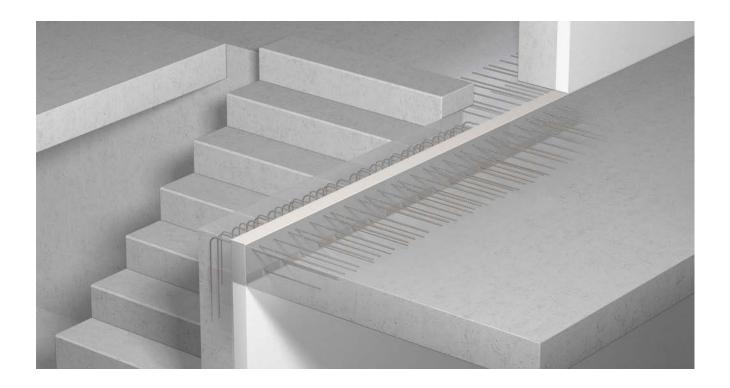
ISOPRO® IP 10 2-teilig bis IP 100 2-teilig


Anschlussbewehrung Pos. 1

Тур	a _{s,erf} cm ² /m	Vorschlag Betonstahl B500
IP10	2,37	5 Ø 8
IP15	3,47	7 Ø 8
IP 20	4,00	8 Ø 8
IP 25	5,62	12 Ø 8
IP 35	6,14	13 Ø 8
IP 45	7,20	15 Ø 8
IP 50	7,73	16 Ø 8
IP 55	9,40	12 Ø 10
IP 65	10,17	13 Ø 10
IP 75	11,04	15 Ø 10
IP 90	11,62	11 Ø 12
IP 100	13,11	12 Ø 12

Rand-bzw. Aufhängebewehrung Pos. 5

IP 10 - 20	IP 25 - 65	IP 75 – 100	
a _{s,erf} cm²/m	a _{s,erf} cm ² /m	a _{s,erf} cm ² /m	
1,13	1,00	-	
2,13	2,13	_	
3,33	3,33	3,33	
4,79	4,79	4,79	
	a _{s,erf} cm ² /m 1,13 2,13 3,33	a _{s,erf} cm²/m a _{s,erf} cm²/m 1,13 1,00 2,13 2,13 3,33 3,33	


Einbau Oberteil

- Das 2-teilige ISOPRO® Element besteht aus Unter- und Oberteil. Das Unterteil wird im Fertigteilwerk in die Elementplatte einbetoniert.
- Das Oberteil wird auf der Baustelle eingebaut.
- Ober- und Unterteil sind so beschriftet, dass sie richtig kombiniert werden k\u00f6nnen. Auf die richtige Kombination auf der Baustelle ist zu achten.
- Beim Aufsetzen des Oberteils ist auf die korrekte Einbaurichtung zu achten.
- Ohne das Oberteil ist die Tragfähigkeit des Anschlusses nicht gegeben.

ISOPRO® IP Varianten

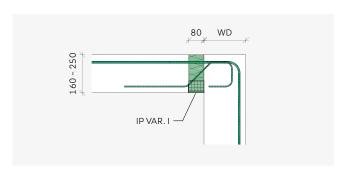
Elemente für auskragende Balkone

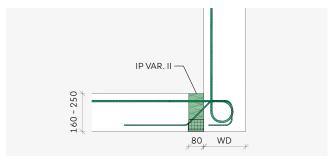

ISOPRO® IP VAR.

- Zur Übertragung von negativen Momenten und positiven Querkräften
- Druckebene mit Betondrucklagern
- Tragstufen IP 20 VAR. bis IP 75 VAR.
- Querkrafttragstufen Standard und Q8
- Betondeckung der Zugstäbe cv35 oder cv50
- $\bullet~$ Elementhöhen in Abhängigkeit der Querkrafttragstufe $\rm h_{\rm min}$ ab 160 mm
- Wandstärken WD 175, 200, 220 und ≥ 240
- Feuerwiderstandsklasse REI120 verfügbar

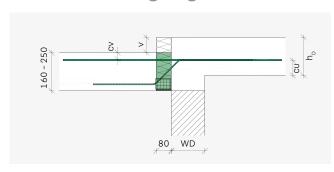
Anschlussgeometrie

- VAR. I Anschluss an eine Wand nach unten
- VAR. II Anschluss an eine Wand nach oben
- VAR. III HV Anschluss an eine nach oben höhenversetzte Decke
- VAR. III UV Anschluss an eine nach unten höhenversetzte Decke


Typenbezeichnung


Anwendung

Anschluss an eine Wand


Wandanschluss nach unten - IP VAR. I

Wandanschluss nach oben - IP VAR. II

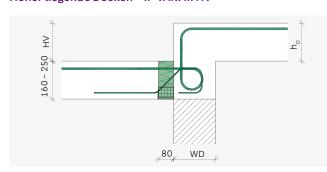
Anschluss an eine gering höhenversetzte Decke mit einem Standard ISOPRO® Element

$$v \le h_D - cv - d_s - cu$$

mit

v - Höhenversatz

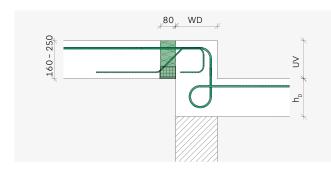
n - Deckenstärke


cv - Betondeckung der Zugstäbe des ISOPRO® Elements

d_s - Durchmesser der Zugstäbe des ISOPRO® Elements

cu - Betondeckung der Zugstäbe des ISOPRO® Elements zu UK Decke

Anschluss an Decken mit einem Versatz von 90 bis 240 mm


Höher liegende Decken – IP VAR. III HV

VAR. III HV Höhenversatz mm

HV 100	90 - 149
HV 150	150 - 199
HV 200	200 - 240

Tiefer liegende Decken – IP VAR. III UV

Höhenversatz mm
≤ 80
81 bis ≤ 90
91 bis ≤ 100
101 bis ≤ 110
111 bis ≤ 120
121 bis ≤ 130
131 bis ≤ 140

VAR. III UV	Höhenversatz mm
UV150	141 bis ≤ 150
UV160	151 bis ≤ 160
UV170	161 bis ≤ 170
UV180	171 bis ≤ 180
UV190	181 bis ≤ 190
UV200	191 bis ≤ 200

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente $m_{_{Rd}}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm

35	50	IP 20 VAR.	IP 25 VAR.	IP 30 VAR.	IP 45 VAR.
160	_	15,4	21,7	23,4	26,6
_	180	16,2	22,9	24,7	28,1
170	-	17,1	24,1	26,1	29,7
_	190	18,0	25,3	27,4	31,2
180	-	18,9	26,6	28,8	32,7
_	200	19,8	27,8	30,1	34,2
190	_	20,7	29,1	31,5	35,8
_	210	21,6	30,3	32,8	37,3
200	_	22,5	31,6	34,2	38,9
_	220	23,4	32,9	35,6	40,4
210	-	24,3	34,2	37,0	42,1
_	230	25,2	35,4	38,4	43,6
220	-	26,2	36,8	39,8	45,2
_	240	27,1	38,0	41,2	46,8
230	_	28,1	39,4	42,6	48,4
-	250	29,0	40,6	44,0	50,5
240	_	30,0	42,0	45,5	51,6
250	_	31,9	44,7	48,3	54,9

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

Tragstufe	h _{min} mm	IP 20 VAR.	IP 25 VAR.	IP 30 VAR.	IP 45 VAR.
Standard	160	52,2	52,2	52,2	52,2
Q8	160	92,7	92,7	92,7	92,7

Abmessungen und Belegung

	IP 20 VAR.	IP 25 VAR.	IP 30 VAR.	IP 45 VAR.
Elementlänge mm	1.000	1.000	1.000	1.000
Zugstäbe	7 Ø 8	10 Ø 8	7 Ø 10	8 Ø 10
Drucklager	4	4	5	5
Querkraftstäbe Standard	6Ø6	6Ø6	6Ø6	6Ø6
Querkraftstäbe Q8	6 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8

Bemessungswerte der aufnehmbaren Momente $\rm m_{_{Rd}}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm

35	50	IP 50 VAR.	IP 55 VAR.	IP 65 VAR.	IP 75 VAR.
160	-	29,8	33,1	39,5	42,7
_	180	31,5	34,9	41,7	45,1
170	-	33,2	36,8	44,0	47,6
_	190	34,9	38,7	46,2	49,9
180	-	36,7	40,6	48,5	52,4
_	200	38,4	42,5	50,7	54,8
190	-	40,1	44,4	53,0	57,3
_	210	41,8	46,3	55,3	59,7
200	-	43,6	48,3	57,6	62,2
_	220	45,3	50,2	59,8	64,7
210	-	47,1	52,1	62,2	67,2
_	230	48,8	54,0	64,4	69,6
220	-	50,6	56,0	66,8	72,2
_	240	52,4	58,0	69,1	74,6
230	_	54,2	60,0	71,5	77,2
_	250	55,9	61,9	73,8	79,7
240	-	57,8	63,9	76,1	82,3
250	_	61,4	67,9	80,5	87,4

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

Tragstufe	h _{min} mm	IP 50 VAR.	IP 55 VAR.	IP 65 VAR.	IP 75 VAR.
Standard	160	52,2	52,2	52,2	52,2
Q8	160	92,7	92,7	92,7	92,7

Abmessungen und Belegung

	IP 50 VAR.	IP 55 VAR.	IP 65 VAR.	IP 75 VAR.
Elementlänge mm	1.000	1.000	1.000	1.000
Zugstäbe	9 Ø 10	10 Ø 10	12 Ø 10	13 Ø 10
Drucklager	6	6	7	8
Querkraftstäbe Standard	6 Ø 6	6 Ø 6	6 Ø 6	6Ø6
Querkraftstäbe Q8	6 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8

Verformung und Überhöhung

Verformung

Auskragende Stahlbetonkonstruktionen werden bei ihrer Erstellung für die voraussichtlich auftretende Verformung überhöht. Sind diese Konstruktionen mit ISOPRO® Elementen thermisch getrennt, so wird für die Ermittlung der Überhöhung die Verformung infolge ISOPRO® Element selbst mit der Verformung infolge Plattenkrümmung nach DIN EN 1992-1-1/NA überlagert. Hierbei ist darauf zu achten, die erforderliche Überhöhung in Abhängigkeit der planmäßigen

Entwässerungsrichtung auf- beziehungsweise abzurunden. Wird an der Gebäudefassade entwässert, ist der Wert aufzurunden, bei Entwässerung am Kragarmende ist abzurunden. Wir empfehlen den Nachweis im Grenzzustand der Gebrauchstauglichkeit für die quasi-ständige Lastfallkombination zu führen ($\gamma_{\rm G}=1,0,\gamma_{\rm Q}=1,0,\psi_{\rm 2}=0,3$). In den unten stehenden Tabellen sind die Verformungsfaktoren tan α zur Ermittlung der Verformung infolge ISOPRO® ersichtlich.

Verformung infolge des Kragplattenanschlusses ISOPRO®

$$w = \tan \alpha \cdot (m_{Ed}/m_{Rd}) \cdot l_k \cdot 10$$

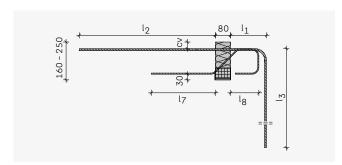
mit

w = Verformung am Kragarmende mm

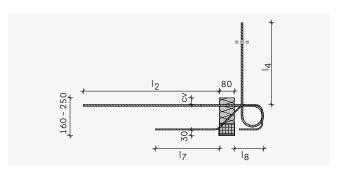
 $\tan \alpha = \text{Verformungsfaktor}, \text{ siehe Produktkapitel}$

 m_{Ed} = Biegemoment für die Ermittlung der Überhöhung infolge des ISOPRO® Elements. Die maßgebende Lastfallkombination im Grenzzustand der Gebrauchstauglichkeit wird durch den Planer getroffen.

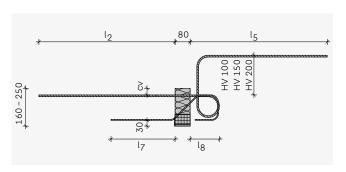
m_{pd} = Widerstandsmoment des ISOPRO® Elementes, siehe Produktkapitel

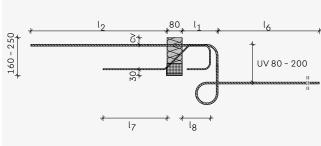

l, = Systemlänge m

Verformungsfaktor tan α für Beton ≥ C 25/30


	Betondeckung cv mm									Eleme	nthöhe h mm
Тур	-	160	170	180	190	200	210	220	230	240	250
IP 20 VAR	35	0,63	0,57	0,53	0,49	0,45	0,42	0,40	0,37	0,35	0,34
IP 25 VAR.	50	-	-	0,60	0,55	0,50	0,47	0,44	0,41	0,38	0,36
IP 30 VAR	35	0,73	0,66	0,61	0,56	0,52	0,48	0,45	0,43	0,40	0,38
IP 75 VAR.	50	_	_	0,69	0,63	0,58	0,54	0,50	0,47	0,44	0,42

Elementaufbau


IP VAR. I

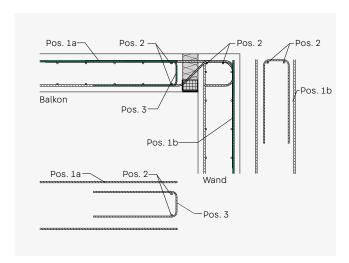

IP VAR. II

IP VAR. III HV

IP VAR. III UV

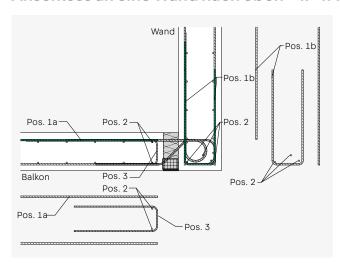
Zugstababmessungen in mm

				IP 20 + IP 25				IP 30 – 75
WD	175	200	220	≥ 240	175	200	220	≥ 240
l ₁	155	170	190	210	_	170	190	210
l ₂ (max.)	≤615	≤615	≤615	≤615	710	710	710	710
l ₃	577	577	577	577	764	764	764	764
ι ₄	422	422	422	422	526	526	526	526
l ₅ (max.)	623	623	623	623	774	774	774	774
l ₆	534	534	534	534	635	635	635	635


Querkraftstababmessungen in mm

Querkrafttragstufe

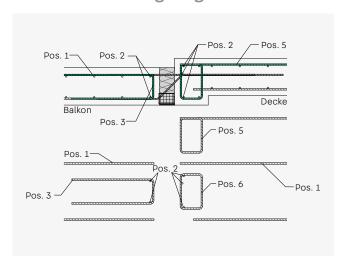
		Standard		Q8
WD	175	≥ 200	175	≥ 200
l ₇	344	344	378	378
lg	150	150	155	170


Bauseitige Bewehrung

Anschluss an eine Wand nach unten - IP VAR. I

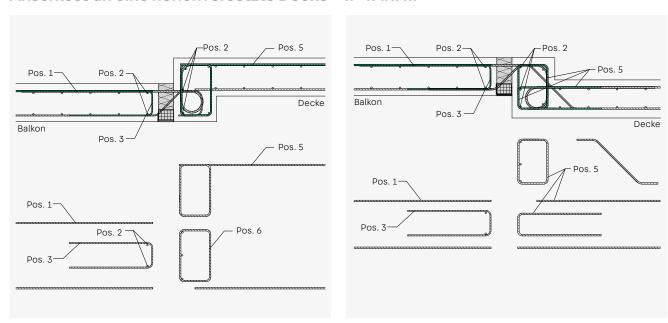
- Pos. 1a: Balkonseitige Anschlussbewehrung für das ISOPRO® Element – siehe Tabelle
- Pos. 1b: Deckenseitige Anschlussbewehrung zur Aufnahme des Anschlussmoments in der Wand nach Angaben des Tragwerksplaners
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 2 Ø 8 wandseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Platten- und Wandbewehrung und konstruktive Randeinfassung am freien Plattenrand nach DIN EN 1992-1-1, mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Das ISOPRO® Element ist idealerweise vor dem Einbau der Wandbewehrung zu verlegen.

Anschluss an eine Wand nach oben - IP VAR. II



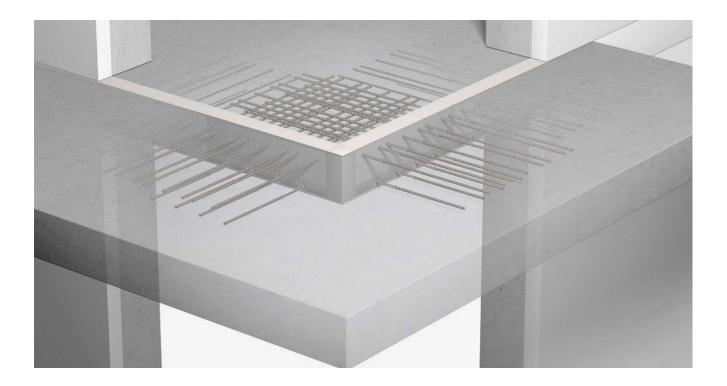
- Pos. 1a: Balkonseitige Anschlussbewehrung für das ISOPRO® Element – siehe Tabelle
- Pos. 1b: Deckenseitige Anschlussbewehrung zur Aufnahme des Anschlussmoments und der Querkraft in der Wand nach Angaben des Tragwerksplaners
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 3 Ø 8 wandseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Platten- und Wandbewehrung und konstruktive Randeinfassung am freien Plattenrand nach DIN EN 1992-1-1, mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Das ISOPRO[®] Element ist idealerweise vor dem Einbau der Wandbewehrung zu verlegen.

Anschlussbewehrung Pos. 1


	IP 20 VAR.	IP 25 VAR.	IP 30 VAR.	IP 45 VAR.	IP 50 VAR.	IP 55 VAR.	IP 65 VAR.	IP 75 VAR.
a _{s,erf} cm ² /m	3,79	5,36	5,84	6,65	7,46	8,26	9,87	13,60
Vorschlag	8 Ø 8	11 Ø 8	8 Ø 10	9 Ø 10	10 Ø 10	11 Ø 10	13 Ø 10	14 Ø 10

Anschluss an eine gering höhenversetzte Decke mit einem Standard IP Element

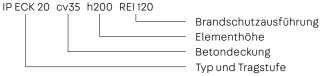
- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO® Element
 Seite 42
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 3 Ø 8 deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Plattenbewehrung und konstruktive Randeinfassung am freien Plattenrand nach DIN EN 1992-1-1 mind. Ø 6/250 nach Angaben des Tragwerksplaners (hier nicht dargestellt)
- Pos. 5: Bügelbewehrung zur Umlenkung der Zugkraft im Unterzug in die obere Zugbewehrung nach Angaben des Tragwerksplaners. Die Übergreifungslänge mit der Zugbewehrung ist sicherzustellen.
- Pos. 6: Querkraftbewehrung des Unterzugs nach Angaben des Tragwerksplaners.


Anschluss an eine höhenversetzte Decke - IP VAR. III

- Pos. 1: Anschlussbewehrung für das ISOPRO® Element siehe Tabelle Seite 54
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 3 Ø 8 deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. \emptyset 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5: Anschlussbewehrung zur Aufnahme des Anschlussmoments und zur Umlenkung der Zugkraft im Unterzug in die obere Zugbewehrung der Decke nach Angaben des Tragwerksplaners. Die Übergreifungslänge mit der Zugbewehrung ist sicherzustellen.
- Pos. 6: Querkraftbewehrung des Unterzugs nach Angaben des Tragwerksplaners
- Das ISOPRO® Element ist idealerweise vor dem Einbau der Unterzugsbewehrung zu verlegen.

ISOPRO® IP ECK und IPT ECK

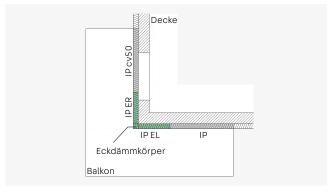
Elemente für auskragende Eckbalkone

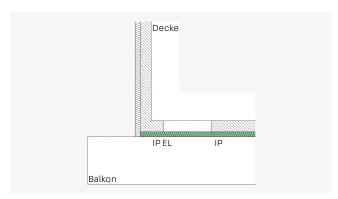

ISOPRO® IP ECK und IPT ECK

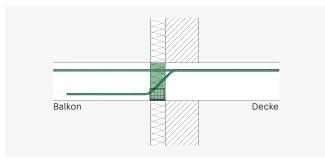
- IP ECK Druckebene mit Betondrucklagern
- IPT ECK Druckebene mit Stahldruckstäben
- Querkrafttragstufe Standard
- Ein Eck-Element besteht aus einem Element EL (Ecke links) in cv35 und einem Element ER (Ecke rechts) in cv50 sowie einem Eckdämmkörper 80 x 80 mm
- Elementhöhen ab 180 mm
- Feuerwiderstandsklassen: IP ECK verfügbar in REI 120, IPT ECK verfügbar in REI 90 (REI 120 mit einer Auslastung von ≤ 85% im GZT)

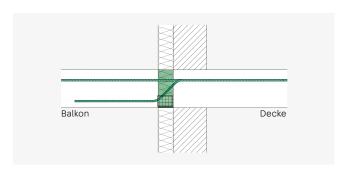
ISOPRO® IP(T) Teilelement EL/ER

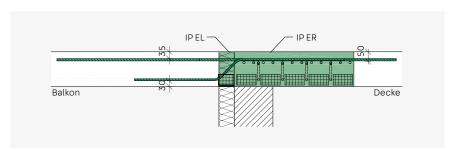
- Teilelement IP EL/ER Druckebene mit Betondrucklagern
- Teilelement IPT EL/ER Druckebene mit Stahldruckstäben
- Querkrafttragstufe Standard
- Betondeckung der Zugstäbe cv35 (EL) oder cv50 (ER)
- Elementhöhen ab 180 mm
- Feuerwiderstandsklassen: IP EL und IP ER verfügbar in REI 120, IPT EL und IPT ER verfügbar in REI 90 (REI 120 mit einer Auslastung von ≤ 85% im GZT)

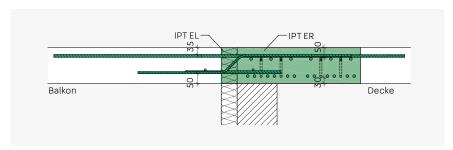

Typenbezeichnung


Anwendung – Elementanordnung


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


ISOPRO® IP ECK - Auskragender Außeneckbalkon


 ${\tt ISOPRO}^{\otimes} {\tt IP\,EL-Auskragender\,Balkon\,mit\,\ddot{u}ber\,das\,Auflager\,\ddot{u}berstehender\,Platte}$


ISOPRO® IP EL/ER - Einbauschnitt cv35

ISOPRO® IP EL/ER - Einbauschnitt cv50

ISOPRO® IP ECK - Schnitt durch die Ecksituation

 ${\tt ISOPRO}^{\otimes}{\tt IPT}\,{\tt ECK-Schnitt}\,{\tt durch}\,{\tt die}\,{\tt Ecksituation}$

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente $m_{_{Rd}}$ in kNm je Teilelement EL/ER

Elementhöhe mm in Abhängigkeit von cv mm	IP ECK 20	IP ECK 30	IPT ECK 50
180	17,9	30,1	32,3
190	19,9	33,4	36,2
200	21,9	36,7	40,1
210	23,9	39,8	44,1
220	25,9	43,0	48,0
230	27,9	46,1	51,9
240	29,8	49,3	55,9
250	31,7	52,5	59,8

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN je Teilelement EL/ER

Querkraft	IP ECK 20	IP ECK 30	IPT ECK 50
h = 180-190 mm	46,4	96,6	96,6
h = 200 -250 mm	46,4	139,1	139,1

Abmessungen und Belegung

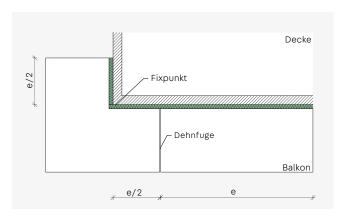
Тур	Elementlänge mm	Zugstäbe	Drucklager DL/ Druckstäbe DS	Querkraftstäbe h = 180 – 190 mm	Querkraftstäbe h = 200 – 250 mm
IP ECK 20	500 + 500	2x 5 Ø 10	2x 3 DL	2x 3 Ø 8	2x 3 Ø 8
IP ECK 30	620 + 620	2x6Ø12	2x 5 DL	2x 4 Ø 10	2x 4 Ø 12
IPT ECK 50	620 + 620	2x 6 Ø 14	DS 2x 12 Ø 14	2x 4 Ø 10	2x 4 Ø 12

Hinweise

- Bei kleinen Kragarmlängen kann anstelle des ISOPRO® IP ECK/IPT ECK Elements auch eine Kombination aus einem Standard Element ISOPRO® IP in cv35 und einem Element ISOPRO® IP in cv50 zum Einsatz kommen.
- Teilelemente des Eck-Elementes sind auch einzeln verfügbar zum Einsatz bei punktuell auftretenden hohen Momenten und Querkräften.
- Bei einem ISOPRO® IP ECK/IPT ECK wird immer das Element EL in cv35 und das Element ER in cv50 ausgeführt. Anordnung links und rechts vom Standpunkt der Decke.
- Bei der Verwendung eines Eck-Elements ist an das Element ER angrenzend ein ISOPRO® IP Element in cv50 erforderlich. Danach kann in cv35 oder cv50 weiter verfahren werden. Die Bewehrungsführung kann unter Umständen vereinfacht werden, wenn weiter in cv50 verfahren wird.

Verformung – Dehnfugenabstand

Verformung

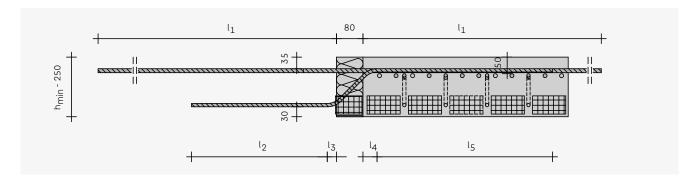

Die Ermittlung der erforderlichen Überhöhung der Stahlbetonbauteile erfolgt analog zu den ISOPRO® Elementen (Seite 36) unter Verwendung der unten stehenden Verformungsfaktoren.

Verformungsfaktor tan α für Beton ≥ C 25/30

	Betondeckung cv mm							Elem	enthöhe h mm
Тур		180	190	200	210	220	230	240	250
IP ECK 20	35/50	1,10	1,00	0,92	0,85	0,79	0,74	0,70	0,65
IP ECK 30	35/50	1,10	1,00	0,92	0,85	0,78	0,73	0,68	0,64
IPT ECK 50	35/50	1,76	1,56	1,41	1,28	1,18	1,09	1,01	0,94

Dehnfugenabstand

Bei Balkonen, die über Eck gehen, ist zu berücksichtigen, dass die Ecke einen Fixpunkt darstellt. Dadurch reduziert sich der maximal zulässige Dehnfugenabstand auf e/2. Überschreiten die Bauteilabmessungen den maximal zulässigen Dehnfugenabstand, so sind senkrecht zur Dämmebene Dehnfugen anzuordnen.

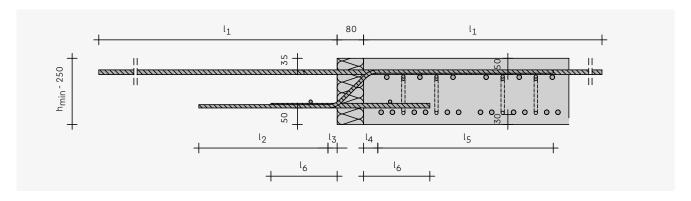

Dehnfugenanordnung bei Eckbalkonen

Maximal zulässiger Dehnfugenabstand

	IP ECK 20	IP ECK 30	IPT ECK 50
Fugenabstand e/2 m	6,50	5,65	5,05

Elementaufbau

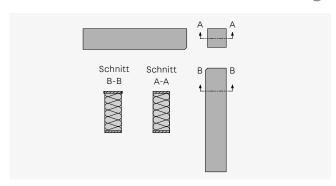
ISOPRO® IP ECK



Länge Zugstab mm	IP ECK 20	IP ECK 30
l ₁	630	730

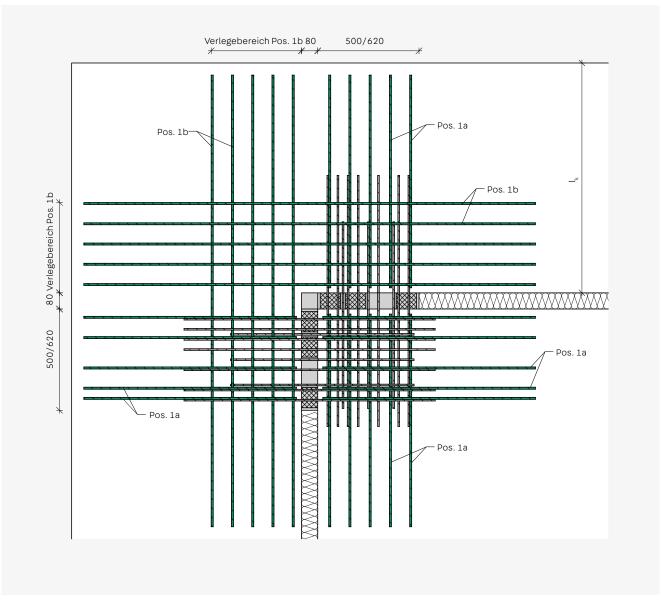
Länge Querkraftstab			Que	rkrafttragstufe
mm	IP Eck 20 h180 – 190	IP Eck 20 h200 – 250	IP Eck 30 h180 – 190	IP Eck 30 h200 – 250
l ₂	420	420	530	630
l ₃	28	28	33	42
l ₄ '	30	45-95	35	47-98
l ₅	420	420	530	630

^{*} abhängig von der Höhe


ISOPRO® IPT ECK

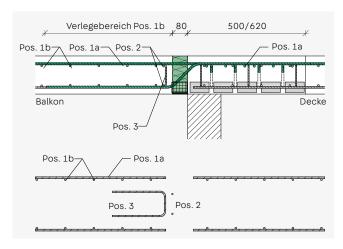
Länge Zugstab mm	IPT ECK 50	Länge Querkraftstab mm	IPT Eck 50 h180 – 190	IPT Eck 50 h200 – 250	Länge Druckstab mm	IPT ECK 50
ι ₁	840	l ₂	530	630	16	200
		l ₃	33	42		
		l ₄ '	35	47-95		
		l ₅	530	630		

^{*} abhängig von der Höhe

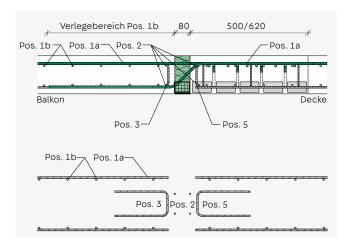

ISOPRO® IP ECK Brandschutzausführung

ISOPRO® IP ECK – Brandschutzausführung, schematische Darstellung des Dämmkörpers

Bauseitige Bewehrung


ISOPRO® IP ECK und IPT ECK

ISOPRO® IP ECK - Draufsicht bauseitige Bewehrung


ISOPRO® IP ECK und IPT ECK

Direkte Lagerung

- Pos. 1a: Anschlussbewehrung und Pos. 1b Zulagebewehrung für das ISOPRO® Element – siehe Tabelle
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)

Indirekte Lagerung

- Pos. 1a: Anschlussbewehrung und Pos. 1b Zulagebewehrung für das ISOPRO® Element – siehe Tabelle
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 3: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5: Aufhängebewehrung für das ISOPRO® Element siehe Tabelle

Anschluss- und Zulagebewehrung

	IP ECK 20	IP ECK 30	IPT ECK 50
Anschlussbewehrung Pos. 1a	5 Ø 10	6 Ø 12	5 Ø 14
Stablänge Pos. 1a	l _k - 70	l _k - 70	l _k - 70
Zulagebewehrung Pos. 1b	2 x 5 Ø 10/100	2 x 6 Ø 12/100	2 x 5 Ø 14/100
Stablänge Pos. 1b	2 x l _k	2 x l _k	2 x l _k
Verlegebereich Pos. 1b	460	570	460
Aufhängebewehrung Pos. 5	3 Ø 8	4 Ø 12	4 Ø 12

Gestützte Bauteile

ISOPRO® IPQ und IPZQ, IPQS/IPTQS und IPQZ

Elemente für gestützte Balkone

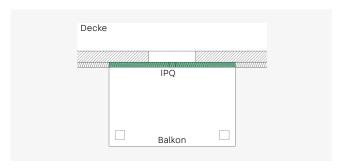
ISOPRO® IPQ, IPZQ

- Zur Übertragung von positiven Querkräften
- Elementlänge 1,0 m
- ISOPRO® IPQ Druckebene mit Betondrucklagern
- ISOPRO® IPZQ zur zwängungsfreien Lagerung ohne Druckkomponente
- Elementhöhen in Abhängigkeit der Tragstufe ab 160 mm
- Feuerwiderstandsklasse REI 120 verfügbar

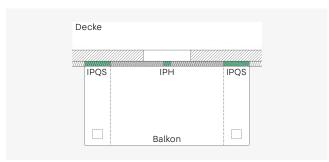
ISOPRO® IPQS/IPTQS, IPQZ

- Kurzelemente f
 ür punktuelle Lastspitzen
- Elementlänge in Abhängigkeit der Tragstufe 0,3 m, 0,4 m oder 0,5 m
- ISOPRO® IPQS Druckebene mit Betondrucklagern
- ISOPRO® IPTQS Druckebene mit Stahldruckstäben
- ISOPRO® IPQZ zur zwängungsfreien Lagerung ohne Druckkomponente
- Elementhöhen in Abhängigkeit der Tragstufe ab 160 mm
- Feuerwiderstandsklasse: IPQS und IPQZ verfügbar in REI 120, IPTQS verfügbar in REI 90 (REI 120 mit einer Auslastung von ≤ 85% im GZT)

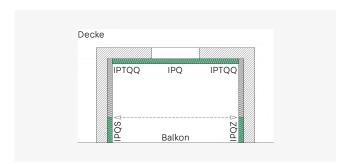
Typenbezeichnung

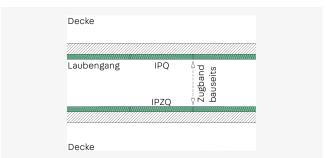

IPQ 20 h200 REI120

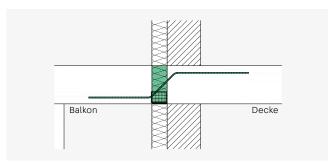
Brandschutzausführung

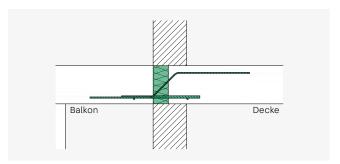

Elementhöhe

Typ und Tragstufe

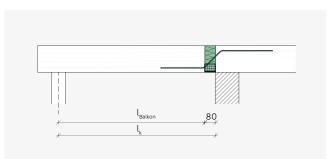

Anwendung – Elementanordnung


ISOPRO® IPQ - Gestützter Balkon


 ${\tt ISOPRO}^{\otimes} {\tt IPQS-Gest\"{u}tzter} \ {\tt Balkon} \ {\tt mit} \ {\tt Unterz\"{u}gen} \ {\tt und} \ {\tt punktueller} \ {\tt Lagerung} \ {\tt mit} \ {\tt ISOPRO}^{\otimes} \ {\tt IPQS} \ {\tt Elementen}$


 ${\tt ISOPRO}^{\otimes} {\tt IPQ}, {\tt IPTQQ}, {\tt IPQS}/{\tt IPTQS}, {\tt IPQZ-Loggiabalkonmit}$ ${\tt punktueller Lastspitze und zwängungsfreier Lagerung vorne}$

ISOPRO® IPQ, IPZQ - Laubengang mit zwängungsfreier Lagerung



ISOPRO® IPQ, IPQS - Einbauschnitt Wärmedämmverbundsystem

ISOPRO® IPTQS - Einbauschnitt einschaliges Mauerwerk

Statisches System

ISOPRO® IPQ - Statisches System

Hinweise

Bei mit Querkraftelementen angeschlossenen Balkonen ist eine entsprechende Unterstützung in allen Bauzuständen sicherzustellen. Temporäre Stützen dürfen erst entfernt werden, wenn die möglicherweise zu einem späteren Zeitpunkt installierten dauerhaften Unterstützungen ausreichend tragfähig und kraftschlüssig mit dem Balkon verbunden sind.

Bemessungstabellen für Beton ≥ C25/30

ISOPRO $^{\circ}$ IPQ – Bemessungswerte der aufnehmbaren Querkraft V $_{\rm Rd}$ in kN/m

Тур	Querkraft V_{Rd} kN/m	Element- höhe mm	Element- länge mm	Querkraft- stäbe	Drucklager
				Belegung	Belegung
IPQ 10	34,8	≥ 160	1.000	4 Ø 6*	4 DL
IPQ 20	43,5	≥ 160	1.000	5 Ø 6*	4 DL
IPQ 30	52,2	≥ 160	1.000	6 Ø 6*	4 DL
IPQ 40	69,5	≥ 160	1.000	8 Ø 6*	4 DL
IPQ 50	86,9	≥ 160	1.000	10 Ø 6*	4 DL
IPQ 70	92,7	≥ 160	1.000	6 Ø 8	4 DL
IPQ 80	108,2	≥ 160	1.000	7 Ø 8	4 DL
IPQ 85	123,6	≥ 160	1.000	8 Ø 8	4 DL
IPQ 90	154,5	≥ 160	1.000	10 Ø 8	4 DL
IPQ 100	193,2	≥ 170	1.000	8 Ø 10	4 DL
IPQ 110	217,3	≥ 170	1.000	9 Ø 10	4 DL
IPQ 120	241,5	≥ 170	1.000	10 Ø 10	4 DL

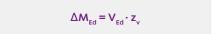
 ${\sf ISOPRO}^{\otimes}\,{\sf IPZQ}$ – Bemessungswerte der aufnehmbaren Querkraft V $_{\sf Rd}$ in kN/m

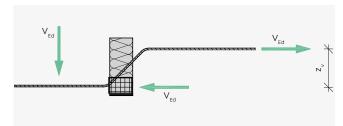
Тур	Querkraft V_{Rd} kN/m	Element- höhe mm	Element- länge mm	Querkraft- stäbe	Drucklager
				Belegung	Belegung
IPZQ 10	34,8	≥ 160	1.000	4 Ø 6*	_
IPZQ 20	43,5	≥ 160	1.000	5 Ø 6*	_
IPZQ 30	52,2	≥ 160	1.000	6 Ø 6*	_
IPZQ 40	69,5	≥ 160	1.000	8 Ø 6*	_
IPZQ 50	86,9	≥ 160	1.000	10 Ø 6*	_
IPZQ 70	92,7	≥ 160	1.000	6 Ø 8	_
IPZQ 80	108,2	≥ 160	1.000	7 Ø 8	_
IPZQ 85	123,6	≥ 160	1.000	8 Ø 8	_
IPZQ 90	154,5	≥ 160	1.000	10 Ø 8	_
IPZQ 100	193,2	≥ 170	1.000	8 Ø 10	_
IPZQ 110	217,3	≥ 170	1.000	9 Ø 10	_
IPZQ 120	241,5	≥ 170	1.000	10 Ø 10	_

 ${\tt ISOPRO}^{\otimes}\,{\tt IPQS-Bemessungswerte}\,{\tt der}\,{\tt aufnehmbaren}\,{\tt Querkraft}\,{\tt V}_{\tt Rd}\,{\tt in}\,{\tt kN}$

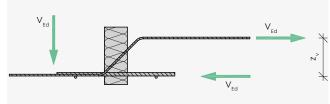
Тур	Querkraft V_{Rd} kN	Element- höhe mm	Element- länge mm	Querkraft- stäbe	Drucklager/ Druckstäbe
				Belegung	Belegung
IPQS 5	26,1	≥ 160	400	3 Ø 6*	2 DL
IPQS 10	30,9	≥ 160	300	2 Ø 8	1 DL
IPQS 15	34,8	≥ 160	500	4 Ø 6*	2 DL
IPQS 20	46,4	≥ 160	400	3 Ø 8	2 DL
IPQS 30	61,8	≥ 160	500	4 Ø 8	2 DL
IPQS 40	48,3	≥ 170	300	2 Ø 10	1 DL
IPQS 50	72,4	≥ 170	400	3 Ø 10	2 DL
IPQS 55	96,6	≥ 170	500	4 Ø 10	2 DL
IPTQS 60	69,5	≥ 180	300	2 Ø 12	DS 3 Ø 14
IPQS 70	104,3	≥ 180	400	3 Ø 12	2 DL
IPQS 75	139,1	≥ 180	500	4 Ø 12	3 DL
IPTQS 80	94,7	≥ 190	300	2 Ø 14	DS4Ø14
IPTQS 90	142,0	≥ 190	400	3 Ø 14	DS 6 Ø 14
IPTQS 100	189,3	≥ 190	500	4 Ø 14	DS 8 Ø 14

 ${\tt ISOPRO}^{\circ}\,{\tt IPQZ-Bemessungswerte}\,{\tt der}\,{\tt aufnehmbaren}\,{\tt Querkraft}\,{\tt V}_{\tt Rd}\,{\tt in}\,{\tt kN}$


Тур	Querkraft V_{Rd} kN	Element- höhe mm	Element- länge mm	Querkraft- stäbe	Drucklager
				Belegung	Belegung
IPQZ 5	26,1	≥ 160	400	3 Ø 6*	_
IPQZ 10	30,9	≥ 160	300	2 Ø 8	-
IPQZ 15	34,8	≥ 160	500	4 Ø 6*	_
IPQZ 20	46,4	≥ 160	400	3 Ø 8	_
IPQZ 30	61,8	≥ 160	500	4 Ø 8	_
IPQZ 40	48,3	≥ 170	300	2 Ø 10	_
IPQZ 50	72,4	≥ 170	400	3 Ø 10	_
IPQZ 55	96,6	≥ 170	500	4 Ø 10	_
IPQZ 60	69,5	≥ 180	300	2 Ø 12	_
IPQZ 70	104,3	≥ 180	400	3 Ø 12	_
IPQZ 75	139,1	≥ 180	500	4 Ø 12	_
IPQZ 80	94,7	≥ 190	300	2Ø14	_
IPQZ 90	142,0	≥ 190	400	3 Ø 14	-
IPQZ 100	189,3	≥ 190	500	4 Ø 14	_


^{*} Elemente mit Querkraftstäben Ø 6 haben deckenseitig einen geschlauften Stab. Bei allen anderen Elementen ist der Querkraftstab auf der Deckenseite gerade (siehe Seite 71).

Bemessung – Dehnfugen


Momente aus exzentrischem Anschluss

Bei der Bemessung der deckenseitigen Anschlussbewehrung der ISOPRO® Querkraftelemente ist zusätzlich ein Moment aus exzentrischem Anschluss zu berücksichtigen. Bei gleichem Vorzeichen ist das Moment mit den Momenten aus der planmäßigen Beanspruchung zu überlagern. Die Ermittlung des Moments $\Delta M_{\rm Ed}$ erfolgt unter der Annahme, dass die Elemente voll ausgenutzt sind.

 $\label{eq:isopro} {\rm ISOPRO}^{\otimes} {\rm IPQ}, {\rm IPQS-Elemente\ mit\ Betondruck lagern} \\ {\rm z_v-Hebelarm\ zur\ Ermittlung\ des\ Versatzmoments} \\$

ISOPRO® IPTQS – Elemente mit Stahldruckstäben z_v – Hebelarm zur Ermittlung des Versatzmoments

Versatzmomente ISOPRO® IPQ, IPZQ

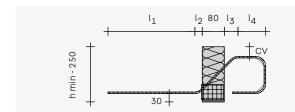
$Versatz momente \, ISOPRO^{\otimes} \, IPQS/IPTQS, \, IPQZ$

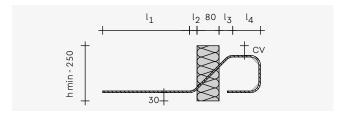
		$\Delta m_{_{ extsf{Ed}}}$ kNm/m
Тур	h < 200 mm	h≥ 200 mm
IPQ/IPZQ 10	3,3	4,7
IPQ/IPZQ 20	4,1	5,8
IPQ/IPZQ 30	4,9	7,0
IPQ/IPZQ 40	6,5	9,3
IPQ/IPZQ 50	8,2	11,6
IPQ/IPZQ 70	8,6	12,3
IPQ/IPZQ 80	10,1	14,4
IPQ/IPZQ 85	11,5	16,4
IPQ/IPZQ 90	14,4	20,6
IPQ/IPZQ 100	17,8	25,5
IPQ/IPZQ 110	20,0	28,7
IPQ/IPZQ 120	22,2	31,9

		$\Delta M_{_{Ed}}$ kNm
Тур	h < 200 mm	h ≥ 200 mm
IPQS/IPQZ 5	2,5	3,5
IPQS/IPQZ 10	2,9	4,1
IPQS/IPQZ 15	3,3	4,7
IPQS/IPQZ 20	4,3	6,2
IPQS/IPQZ 30	5,7	8,2
IPQS/IPQZ 40	4,4	6,4
IPQS/IPQZ 50	6,7	9,6
IPQS/IPQZ 55	8,9	12,7
IPTQS/IPQZ 60	7,1	8,5
IPQS/IPQZ 70	9,5	13,7
IPQS/IPQZ 75	12,7	18,2
IPTQS/IPQZ 80	10,5	11,5
IPTQS/IPQZ 90	15,8	17,2
IPTQS/IPQZ 100	21,1	22,9

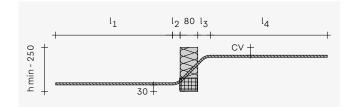
Maximal zulässiger Dehnfugenabstand

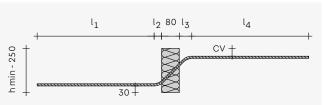
IPQ/IPZQ 10 - 120 IPQS/IPQZ 5 - 40, 50, 55 IPQS/IPQZ 45, 70, 75

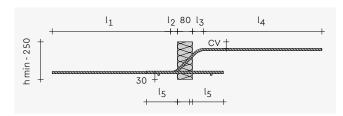

IPTQS/IPQZ 60, 80, 90

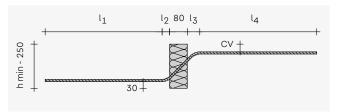

Fugenabstand e m	13,0	11,3	10,1

Elementaufbau


ISOPRO® IPQ, IPQS, IPTQS, IPZQ*, IPQZ*


Querkraftstab Ø 6




Querkraftstab ≥ Ø 8 - 12

Querkraftstab ≥ Ø 12 – 14

Abmessungen in mm

1 Suiza Burralisada	uluus Casas Is					
Ø 14	Ø 14	Ø 12	Ø 10	Ø 8	Ø6	Ø Stab
60, 80 - 100	80 - 100	60		_		IPTQS
_	80 - 100	60 – 75	40 – 55	10 - 30	5, 15	IPQZ
_	_	70 – 75	40 – 55	10 - 30	5, 15	IPQS
-	_	_	100 - 120	70 – 90	10 - 50	IPZQ
-	_	_	100 - 120	70 – 90	10 - 50	IPQ

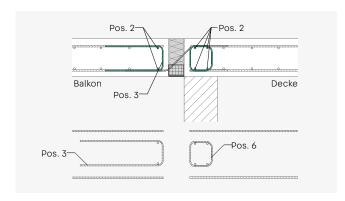
พรเลย		w	W 10	W 12	W 14	Ø 14
				Länge Qu	erkraftstab	Länge Druckstab
					mm	mm
l ₁	320	420	530	630	740	-
l ₂	24	28	33	42	47	_
l3 [*]	150 ¹	420	530	630	740	-
l ₄	150 ¹	15-95	28-98	35-95	58-98	-
l ₅	-	-	-	-	-	185
h _{min}	160	160	170	180	200	-

Beto	ndec	kung
------	------	------

Element- höhe h mm	Beton- deckung cv mm
160	35
170	45
180	35
190	45
200	35
210	45
220	35
230	45
240	55
250	65

¹ l₃+l₄ fix 150

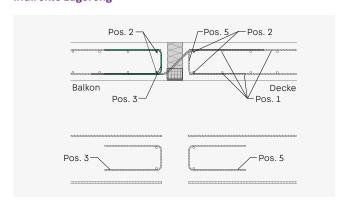
Hinweise


Die Betondeckung der Druckstäbe und der Querkraftstäbe unten beträgt generell 30 mm. Die Betondeckung der Querkraftstäbe oben ist in Abhängigkeit der Elementhöhe und des Stabdurchmessers cv35 bis cv65.

^{*} abhängig von der Höhe

Bauseitige Bewehrung

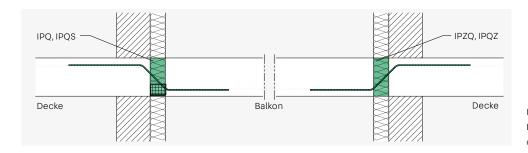
ISOPRO® IPQ, IPZQ, IPQS, IPQZ mit Querkraftstab Ø 6 – deckenseitig geschlauft


Direkte Lagerung

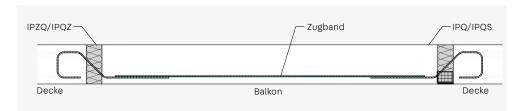
- Pos. 1: Plattenbewehrung nach DIN EN 1992-1-1 nach Angaben des Tragwerksplaners (nicht im Detail dargestellt)
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 4 Ø 8 deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 6: Bügel (Randbalken) Ø 6/200
- Bei indirekter Lagerung ist zusätzlich deckenseitig eine Aufhängebewehrung anzuordnen – siehe Tabelle Pos. 5

ISOPRO® IPQ, IPZQ, IPQS/IPTQS, IPQZ - Querkraftstab deckenseitig gerade

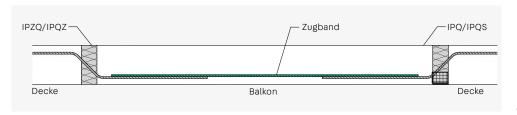
Indirekte Lagerung


- Pos. 1: Plattenbewehrung nach DIN EN 1992-1-1 nach Angaben des Tragwerksplaners
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkonseitig und deckenseitig
- Pos. 3: Konstruktive Randeinfassung parallel zum Dämmelement nach DIN EN 1992-1-1 mind Ø 6/250 bzw. nach Angaben des Tragwerksplaners
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5: Deckenseitige Aufhängebewehrung bei indirekter Lagerung – siehe Tabelle

Aufhängebewehrung für Beton ≥ C25/30


Тур	Aufhängebewehrung Pos. 5 $A_{s,erf}$ cm ²
IPQ/IPZQ 10	0,80
IPQ/IPZQ 20	1,00
IPQ/IPZQ 30	1,20
IPQ/IPZQ 40	1,60
IPQ/IPZQ 50	2,00
IPQ/IPZQ 70	2,13
IPQ/IPZQ 80	2,49
IPQ/IPZQ 85	2,84
IPQ/IPZQ 90	3,55
IPQ/IPZQ 100	4,44
IPQ/IPZQ 110	5,00
IPQ/IPZQ 120	5,55

Тур	Aufhängebewehrung Pos. 5 ${\bf A}_{\rm s,erf}{\rm cm^2}$
IPQS/IPQZ 5	0,60
IPQS/IPQZ 10	0,71
IPQS/IPQZ 15	0,80
IPQS/IPQZ 20	1,07
IPQS/IPQZ 30	1,42
IPQS/IPQZ 40	1,11
IPQS/IPQZ 50	1,66
IPQS/IPQZ 55	2,22
IPTQS/IPQZ 60	1,60
IPQS/IPQZ 70	2,40
IPQS/IPQZ 75	3,20
IPTQS/IPQZ 80	2,18
IPTQS/IPQZ 90	3,26
IPTQS/IPQZ 100	4,34


Bauseitige Bewehrung bei zwängungsfreier Lagerung

ISOPRO® IPQ/IPZQ, IPQS/IPQZ -Einbauschnitt mit gegenüberliegenden Typen gleicher Tragstufe

ISOPRO® IPZQ/IPQ, IPQZ/IPQS -Bauseitiges Zugband in der unteren Bewehrungslage - Querkraftstab Ø 6 deckenseitig geschlauft

7ughand

10 Ø 10

ISOPRO® IPZQ/IPQ, IPQZ/IPQS – Bauseitiges Zugband in der unteren Bewehrungslage – Querkraftstab deckenseitig gerade

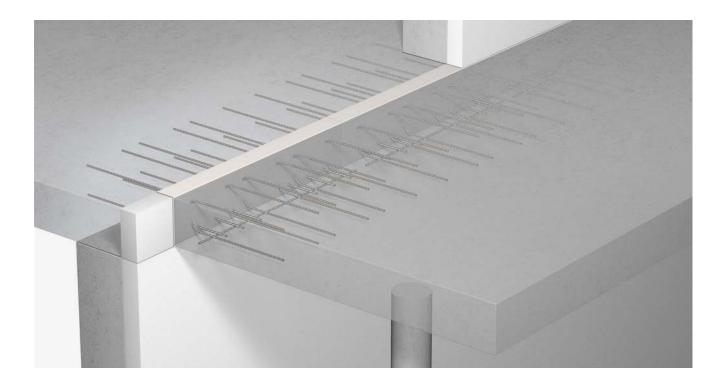
Für die zwängungsfreie Lagerung mit einem ISOPRO® Element IPZQ oder IPQZ ist gegenüberliegend ein entsprechendes Element IPQ beziehungsweise IPQS/IPTQS zu verwenden.

Zwischen den beiden Elementen ist ein Zugband entsprechend der Querkraftbewehrung der ISOPRO® Elemente zu verlegen.

Zugband ISOPRO® IPZQ

Typ

IPZQ 120


тур	Zogband
IPZQ 10	4 Ø 6
IPZQ 20	5 Ø 6
IPZQ 30	6 Ø 6
IPZQ 40	8 Ø 6
IPZQ 50	10 Ø 6
IPZQ 70	6 Ø 8
IPZQ 80	7 Ø 8
IPZQ 85	8 Ø 8
IPZQ 90	10 Ø 8
IPZQ 100	8 Ø 10
IPZQ 110	9 Ø 10

Zugband ISOPRO® IPQZ

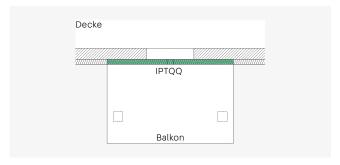
Тур	Zugband
IPQZ 5	3 Ø 6
IPQZ 10	2Ø8
IPQZ 15	4 Ø 6
IPQZ 20	3Ø8
IPQZ 30	4 Ø 8
IPQZ 40	2 Ø 10
IPQZ 50	3 Ø 10
IPQZ 55	4 Ø 10
IPQZ 60	2 Ø 12
IPQZ 70	3 Ø 12
IPQZ 75	4 Ø 12
IPQZ 80	2 Ø 14
IPQZ 90	3 Ø 14
IPQZ 100	4 Ø 14

ISOPRO® IPTQQ und IPTQQS

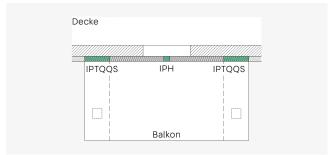
Elemente für gestützte Balkone mit abhebenden Lasten

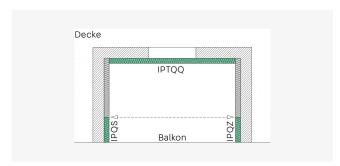
ISOPRO® IPTQQ

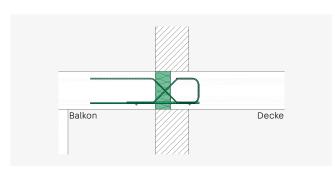
- Zur Übertragung von positiven und negativen Querkräften, Elementlänge 1,0 m
- Druckebene mit Stahldruckstäben
- Tragstufen IPTQQ 10 bis IPTQQ 110
- Zur zwängungsfreien Lagerung sind auch IPZQQ Elemente ohne Druckstäbe erhältlich
- Elementhöhen in Abhängigkeit des Stabdurchmessers ab 160 mm
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT

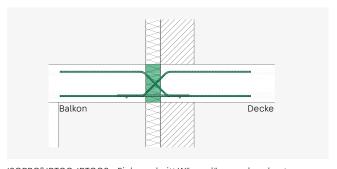

ISOPRO® IPTQQS

- Elementlänge in Abhängigkeit der Tragstufe 0,3 m, 0,4 m oder 0,5 m
- Druckebene mit Stahldruckstäben
- Tragstufen IPTQQS 10 bis IPTQQS 100
- Zur zwängungsfreien Lagerung sind auch IPQQZ Elemente ohne Druckstäbe erhältlich
- Elementhöhen in Abhängigkeit des Stabdurchmessers ab 160 mm
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)


Typenbezeichnung IPTQQ 20 h200 REI 90 Brandschutzausführung Elementhöhe Typ und Tragstufe


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


ISOPRO® IPTQQ – Gestützter Balkon mit eingerückter Stützenlage


ISOPRO® IPTQQS – Gestützter Balkon mit Unterzügen und punktueller Lagerung mit ISOPRO® IPTQQS Elementen

ISOPRO® IPTQQ, IPQS, IPQZ – Loggiabalkon mit punktueller Lastspitze vorne und abhebenden Lasten im Eckbereich hinten

ISOPRO® IPTQQ - Einbauschnitt einschaliges Mauerwerk - Querkraftstab deckenseitig geschlauft

ISOPRO® IPTQQ, IPTQQS - Einbauschnitt Wärmedämmverbundsystem - Querkraftstab deckenseitig gerade

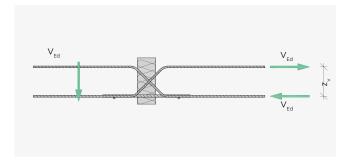
Hinweise

Bei mit Querkraftelementen angeschlossenen Balkonen ist eine entsprechende Unterstützung in allen Bauzuständen sicherzustellen. Temporäre Stützen dürfen erst entfernt werden, wenn die möglicherweise zu einem späteren Zeitpunkt installierten dauerhaften Unterstützungen ausreichend tragfähig und kraftschlüssig mit dem Balkon verbunden sind.

Bemessungstabellen für Beton ≥ C25/30

 $ISOPRO^{\circ}\,IPTQQ-Bemessungswerte\,der\,aufnehmbaren\,Querkraft\,V_{_{Rd}}\,in\,kN/m$

Тур	Querkraft V_{Rd} kN/m	Element- höhe mm	Element- Querkraft- länge mm stäbe		Druckstäbe
				Belegung	Belegung
IPTQQ 10	± 34,8	≥ 160	500 + 500	2 x 4 Ø 6*	4 Ø 10
IPTQQ 30	± 52,2	≥160	500 + 500	2 x 6 Ø 6*	4 Ø 10
IPTQQ 40	± 69,5	≥ 160	500 + 500	2 x 8 Ø 6*	6 Ø 10
IPTQQ 50	± 86,9	≥160	500 + 500	2 x 10 Ø 6*	6 Ø 10
IPTQQ 70	± 92,7	≥ 160	500 + 500	2 x 6 Ø 8	6 Ø 10
IPTQQ 90	± 144,9	≥ 170	500 + 500	2 x 6 Ø 10	8 Ø 10
IPTQQ 110	± 208,6	≥ 180	500 + 500	2 x 6 Ø 12	12 Ø 10


^{*} Elemente mit Querkraftstäben Ø 6 haben deckenseitig einen geschlauften Stab. Bei allen anderen Elementen ist der Querkraftstab auf der Deckenseite gerade (siehe Seite 78).

 ${\tt ISOPRO}^{\otimes}\,{\tt IPTQQS-Bemessungswerte}\,{\tt der}\,{\tt aufnehmbaren}\,{\tt Querkraft}\,{\tt V}_{\tt Rd}\,{\tt kN}$

Тур	Querkraft V_{Rd} kN	Element- höhe mm	Element- länge mm	Querkraft- stäbe	Druckstäbe
				Belegung	Belegung
IPTQQS 10	± 30,9	≥ 160	300	2 x 2 Ø 8	2 Ø 10
IPTQQS 20	± 46,4	≥ 160	400	2 x 3 Ø 8	3 Ø 10
IPTQQS 40	± 48,3	≥ 170	300	2 x 2 Ø 10	3 Ø 10
IPTQQS 50	± 72,4	≥ 170	400	2 x 3 Ø 10	4 Ø 10
IPTQQS 60	± 69,5	≥ 180	300	2 x 2 Ø 12	4 Ø 10
IPTQQS 70	± 104,3	≥ 180	400	2 x 3 Ø 12	6 Ø 10
IPTQQS 80	± 94,7	≥ 190	300	2 x 2 Ø 14	4 Ø 14
IPTQQS 90	± 142,0	≥ 190	400	2 x 3 Ø 14	6 Ø 14
IPTQQS 100	± 189,3	≥ 190	500	2 x 4 Ø 14	8 Ø 14

Momente aus exzentrischem Anschluss

Bei der Bemessung der deckenseitigen Anschlussbewehrung der ISOPRO® Querkraftelemente ISOPRO® IPTQQ und IPTQQS ist zusätzlich ein Moment aus exzentrischem Anschluss zu berücksichtigen. Bei gleichem Vorzeichen ist das Moment mit $\label{eq:continuous} den \, Momenten \, aus \, der \, planmäßigen \, Beanspruchung \, zu \, \ddot{u}berlagern. \, Die \, Ermittlung \, des \, Moments \, \Delta M_{\rm Ed} \, erfolgt \, unter \, der \, Annahme, \, dass \, die \, Elemente \, voll \, ausgenutzt \, sind.$

 ${\tt ISOPRO}^{\otimes} {\tt IPTQQ, IPTQQS-Elemente\ mit\ Stahldruckst\"{a}ben}$ ${\tt z_v-Hebelarm\ zur\ Ermittlung\ des\ Versatzmoments}$

$\Delta M_{Ed} = V_{Ed} \cdot z_{v}$

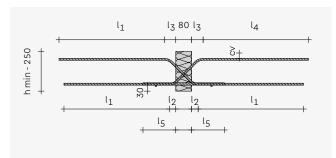
Versatzmomente ISOPRO® IPTQQ

Versatzmomente ISOPRO® IPTQQS

Тур		$\Delta m_{_{Ed}}$ kNm/m	Тур		$\Delta M_{_{Ed}}$ kNm
	h < 200 mm	h ≥ 200 mm		h < 200 mm	h ≥ 200 mm
IPTQQ 10	3,0	4,4	IPTQQS 10	2,7	3,9
IPTQQ 30	4,5	6,6	IPTQQS 20	4,0	5,9
IPTQQ 40	6,1	8,8	IPTQQS 40	4,6	6,0
IPTQQ 50	7,6	11,0	IPTQQS 50	6,9	9,1
IPTQQ 70	8,0	11,7	IPTQQS 60	7,2	8,6
IPTQQ 90	13,8	18,1	IPTQQS 70	10,9	12,9
IPTQQ 110	19,8	26,1	IPTQQS 80	10,5	11,5
			IPTQQS 90	15,8	17,2
			IPTQQS 100	21,1	22,9

Maximal zulässiger Dehnfugenabstand

	IPTQQ 10 - 90 IPTQQS 10 - 50	IPTQQ 110 IPTQQS 60 - 70	IPTQQS 80 - 90
Fugenabstand e m	13,0	11,3	10,1


Elementaufbau

ISOPRO® IPQ, IPQS, IPTQS, IPZQ, IPQZ

Querkraftstab Ø 6

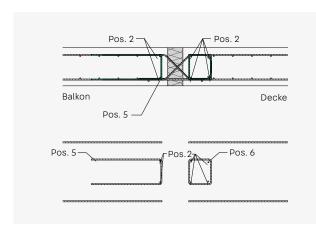
Querkraftstab ≥ Ø 8 – 14

Abmessungen in mm

IPTQQ	10 - 50	70	90	110	-	10 - 110	-
IPTQQS	_	10 - 20	40 – 50	60 - 70	80 - 100	10 - 70	80 - 100
Ø Stab	Ø 6	Ø 8	Ø 10	Ø 12	Ø 14	Ø 10	Ø 14
				Länge	Querkraftstab	Lä	inge Druckstab
					mm		mm
l ₁	320	420	530	630	740	-	-
l ₂	24	28	33	42	47	-	-
l ₃ .	150¹	420	530	630	740	-	-
l ₄	150¹	15-95	28-98	35-95	58-98	-	-
l ₅	-	-	-	-	-	150	185
h _{min}	160	160	170	180	200	-	-

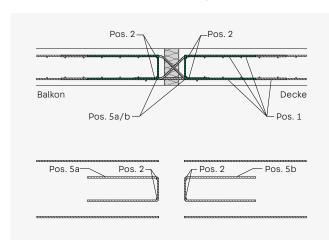
^{*} abhängig von der Höhe

Betondeckung


Elementhöhe h	Betondeckung cv Querkraftstab Ø 6	Betondeckung cv Querkraftstab Ø 8 – 14
mm	mm	mm
160	35	35
170	45	45
180	35	35
190	45	45
200	35	35
210	45	45
220	55	35
230	65	45
240	75	55
250	85	65

 $[\]mathbf{h}_{\min}\operatorname{ist}\mathbf{zu}\operatorname{beachten}$

¹ l₃+l₄ fix 150


Bauseitige Bewehrung

ISOPRO® IPTQQ 10 bis 50 mit Querkraftstab Ø 6 – deckenseitig geschlauft

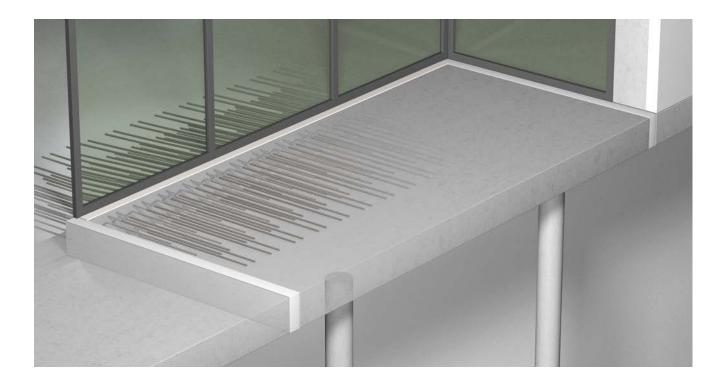
- Pos. 1: Plattenbewehrung nach Angaben des Tragwerksplaners
- Pos. 2: Verteilereisen 2 Ø 8 balkonseitig, 4 Ø 8 deckenseitig
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5: Balkonseitige Aufhängebewehrung siehe Tabelle
- Pos. 6: Bügel (Randbalken) Ø 6/200

ISOPRO® IPTQQ 70 bis 110, IPTQQS 10 bis 90 - Querkraftstab deckenseitig gerade

- Pos. 1: Plattenbewehrung nach Angaben des Tragwerksplaners
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5a: Balkonseitige Aufhängebewehrung
- Pos. 5b: Deckenseitige Aufhängebewehrung bei indirekter Lagerung – siehe Tabelle

Aufhängebewehrung für Beton ≥ c25/30

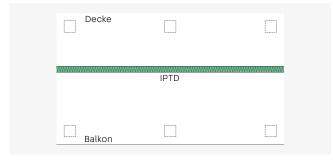
Тур	Aufhängebewehrung Pos. 5, a _{s,erf} cm²/m
IPTQQ 10	0,80
IPTQQ 30	1,20
IPTQQ 40	1,60
IPTQQ 50	2,00
IPTQQ 70	2,13
IPTQQ 90	3,33
IPTQQ 110	4,80


Тур	Aufhängebewehrung Pos. 5, $a_{s,erf}$ cm ²
IPTQQS 10	0,71
IPTQQS 20	1,07
IPTQQS 40	1,11
IPTQQS 50	1,66
IPTQQS 60	1,60
IPTQQS 70	2,40
IPTQQS 80	2,18
IPTQQS 90	3,26
IPTQQS 100	4,34

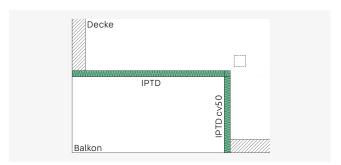
Durchlaufelemente

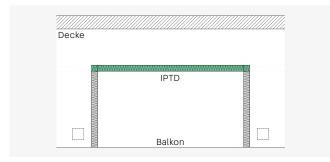
ISOPRO® IPTD

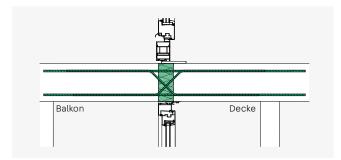
Elemente für durchlaufende Platten


ISOPRO® IPTD

- Zur Übertragung von negativen und positiven Momenten sowie positiven und negativen Querkräften
- Zug- und Druckebene mit Stahlstäben
- Tragstufen IPTD 20 bis IPTD 100
- Querkrafttragstufen Standard, Q8, Q10
- Betondeckung der Zugstäbe oben cv35 oder cv50
- Betondeckung der Druckstäbe unten 30 mm für cv35 und 50 mm für cv50
- Elementhöhen in Abhängigkeit der Querkrafttragstufe ab 160 mm
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)

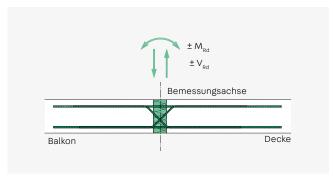

Typenbezeichnung IPTD 50 Q8 cv35 h200 REI 90 Brandschutzausführung Elementhöhe Betondeckung Querkrafttragstufe Typ und Tragstufe


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


ISOPRO® IPTD - Durchlaufende Platte mit einer Glasfassade

ISOPRO® IPTD - Inneneckbalkon mit großen Abmessungen und Lasten

 ${\tt ISOPRO}^{\otimes} {\tt IPTD} - {\tt Einspringender \, Balkon \, mit \, Glasfassade \, ohne \, }$ direktes ${\tt Auflager}$



ISOPRO® IPTD - Einbauschnitt Glasfassade

Hinweise zur Bemessung

- Die Fuge zwischen Balkon und Deckenplatte muss bei der Berechnung im FEM Programm berücksichtigt werden
- Mit den ISOPRO® IPTD Elementen können nur Biegemomente senkrecht zur Dämmfuge übertragen werden
- Bei der Schnittgrößenermittlung muss die Drehfedersteifigkeit der ISOPRO® IPTD Elemente iterativ in die Berechnung eingehen. Zunächst wird eine Annahme für die Drehfedersteifigkeit der Wärmedämmelemente getroffen. Anhand der sich ergebenden Schnittgrößen wird dann ein Element ausgewählt. Im nächsten Schritt wird die tatsächliche Drehfedersteifigkeit des gewählten Elements in die Berechnung einbezogen. Möglicherweise ist ein weiterer Iterationsschritt erforderlich, um zum endgültigen Ergebnis zu kommen.
- Zur Übertragung von Kräften senkrecht und parallel über die Fuge hinweg können die IPTD Elemente mit ISOPRO®IPE Elementen kombiniert werden.

ISOPRO® IPTD - Statisches System

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente $\boldsymbol{m}_{_{Rd}}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm

35	50	IPTD 20	IPTD 20 Q8	IPTD 20 Q10	IPTD 30	IPTD 30 Q8	IPTD 30 Q10	IPTD 50	IPTD 50 Q8	IPTD 50 Q10
160	_	± 14,6	± 13,0	_	± 22,0	± 20,4	_	± 30,1	± 28,5	_
_	200	± 15,5	± 13,7	_	± 23,3	± 21,6	_	± 31,9	± 30,2	_
170	-	± 16,3	± 14,5	± 12,5	± 24,7	± 22,8	± 20,8	± 33,7	± 31,9	± 29,9
_	210	± 17,2	± 15,3	± 13,1	± 26,0	± 24,1	± 22,0	± 35,5	± 33,6	± 31,5
180	-	± 18,1	± 16,0	± 13,8	± 27,3	± 25,3	± 23,1	± 37,3	± 35,3	± 33,1
_	220	± 18,9	± 16,8	± 14,4	± 28,6	± 26,5	± 24,2	± 39,1	± 37,0	± 34,7
190	_	± 19,8	± 17,5	± 15,1	± 30,0	± 27,8	± 25,3	± 40,9	± 38,7	± 36,3
_	230	± 20,7	± 18,3	± 15,7	± 31,3	± 29,0	± 26,4	± 42,8	± 40,5	± 37,9
200	-	± 21,5	± 19,1	± 16,4	± 32,6	± 30,2	± 27,6	± 44,6	± 42,2	± 39,5
-	240	± 22,4	± 19,8	± 17,0	± 33,9	± 31,4	± 28,7	± 46,4	± 43,9	± 41,1
210	-	± 23,2	± 20,6	± 17,7	± 35,3	± 32,7	± 29,8	± 48,2	± 45,6	± 42,7
_	250	± 24,1	± 21,4	± 18,4	± 36,6	± 33,9	± 30,9	± 50,0	± 47,3	± 44,3
220	-	± 25,0	± 22,1	± 19,0	± 37,9	± 35,1	± 32,0	± 51,8	± 49,0	± 45,9
230	_	± 26,7	± 23,7	± 20,3	± 40,6	± 37,6	± 34,3	± 55,4	± 52,4	± 49,2
240	_	± 28,4	± 25,2	± 21,6	± 43,2	± 40,0	± 36,5	± 59,1	± 55,9	± 52,4
250	_	± 30,1	± 26,7	± 22,9	± 45,9	± 42,5	± 38,8	± 62,7	± 59,3	± 55,6

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

	IPTD 20	IPTD 20 Q8	IPTD 20 Q10	IPTD 30	IPTD 30 Q8	IPTD 30 Q10	IPTD 50	IPTD 50 Q8	IPTD 50 Q10
Querkraft V _{Rd} kN/m	± 53,0	± 92,0	± 135,0	± 53,0	± 92,0	± 135,0	± 53,0	± 92,0	± 135,0

Abmessungen und Belegung

	IPTD 20	IPTD 20	IPTD 20	IPTD 30	IPTD 30	IPTD 30	IPTD 50	IPTD 50	IPTD 50
		Q8	Q10		Q8	Q10		Q8	Q10
Elementlänge mm			500 + 500			500 + 500			500 + 500
Zug-/Druckstäbe			6 Ø 10			6 Ø 12			8 Ø 12
Querkraftstäbe	2 x 4 Ø 8	2 x 6 Ø 8	2x6Ø10	2 x 4 Ø 8	2 x 6 Ø 8	2x6 Ø 10	2 x 4 Ø 8	2 x 6 Ø 8	2x6 Ø 10

Bemessungswerte der aufnehmbaren Momente $\rm m_{\rm Rd}$ in kNm/m

Elementhöhe mm in Abhängigkeit von cv mm

VOITCVIIII										
35	50	IPTD 70	IPTD 70 Q8	IPTD 70 Q10	IPTD 90	IPTD 90 Q8	IPTD 90 Q10	IPTD 100	IPTD 100 Q8	IPTD 100 Q10
160	_	± 38,1	± 36,5	_	± 46,2	± 44,6	_	± 49,8	_	-
_	200	± 40,4	± 38,7	-	± 49,0	± 47,3	_	± 52,9	_	-
170	_	± 42,7	± 40,9	± 38,9	± 51,8	± 50,0	± 48,0	± 56,0	± 54,0	-
_	210	± 45,0	± 43,1	±41,0	± 54,6	± 52,6	± 50,5	± 59,1	± 57,0	_
180	_	± 47,3	± 45,3	± 43,1	± 57,3	± 55,3	± 53,1	±62,1	± 60,0	± 57,7
_	220	± 49,6	± 47,5	±45,2	± 60,1	± 58,0	± 55,7	± 65,2	± 62,9	± 60,5
190	_	± 51,9	± 49,7	± 47,3	± 62,9	± 60,7	± 58,3	± 68,3	± 65,9	± 63,4
_	230	± 54,2	±51,9	± 49,4	± 65,7	± 63,4	± 60,9	± 71,4	± 68,9	± 66,3
200	_	± 56,5	± 54,1	± 51,5	± 68,5	± 66,1	± 63,4	± 74,4	± 71,8	± 69,1
_	240	± 58,8	± 56,3	± 53,6	±71,3	± 68,8	± 66,0	± 77,5	± 74,8	± 72,0
210	_	± 61,1	± 58,5	± 55,7	± 74,0	±71,4	± 68,6	± 80,6	± 77,8	± 74,8
_	250	± 63,4	± 60,7	± 57,8	± 76,8	± 74,1	±71,2	± 83,7	± 80,7	± 77,7
220	_	± 65,7	± 62,9	± 59,8	± 79,6	± 76,8	± 73,7	± 86,7	± 83,7	± 80,5
230	_	± 70,3	± 67,3	± 64,0	± 85,2	± 82,2	± 78,9	± 92,9	± 89,6	± 86,3
240	_	± 74,9	± 71,7	± 68,2	± 90,7	± 87,6	± 84,1	± 99,0	± 95,6	± 92,0
250	_	± 79,5	± 76,1	± 72,4	± 96,3	± 92,9	± 89,2	± 105,2	± 101,5	± 97,7

Bemessungswerte der aufnehmbaren Querkräfte $V_{_{Rd}}$ in kN/m

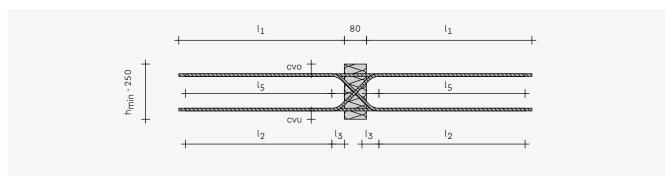
	IPTD 70	IPTD 70 Q8	IPTD 70 Q10	IPTD 90	IPTD 90 Q8	IPTD 90 Q10	IPTD 100	IPTD 100 Q8	IPTD 100 Q10
Querkraft V _{Rd} kN/m	± 53,0	± 92,0	± 135,0	± 53,0	± 92,0	± 135,0	± 92,0	± 135,0	± 180,0

Abmessungen und Belegung

	IPTD 70	IPTD 70	IPTD 70	IPTD 90	IPTD 90	IPTD 90	IPTD 100	IPTD 100	IPTD 100
		Q8	Q10		Q8	Q10		Q8	Q10
Elementlänge mm			500 + 500			500 + 500			500 + 500
Zug-/Druckstäbe			10 Ø 12			12 Ø 12			12 Ø 14
Querkraftstäbe	2 x 4 Ø 8	2 x 6 Ø 8	2x6Ø10	2 x 4 Ø 8	2 x 6 Ø 8	2x6Ø10	2 x 4 Ø 8	2x6Ø10	2x6Ø12

Dehnfugenabstand – Elementaufbau

Dehnfugenabstand


Überschreiten die Bauteilabmessungen den maximal zulässigen Dehnfugenabstand, so sind senkrecht zur Dämmebene Dehnfugen anzuordnen. Der maximal zulässige Dehnfugenabstand e ist abhängig vom maximal über die Dehnfuge hinweg geführten Stabdurchmesser und somit typenabhängig. Durch Fixpunkte wie eine Auflagerung über Eck oder die

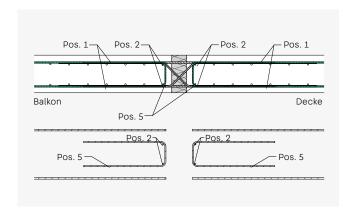
Verwendung von ISOPRO® IPH oder IPE Elementen kommt es zu erhöhten Zwängungen wodurch der maximal zulässige Dehnfugenabstand auf e/2 reduziert werden muss. Der halbe maximale Dehnfugenabstand wird immer vom Fixpunkt aus gemessen.

Maximal zulässiger Dehnfugenabstand

	IPTD 20	IPTD 30 – 90	IPTD 100
Fugenabstand e m	13,0	11,3	10,1

Elementaufbau ISOPRO® IPTD

cvo: 35/50 | cvu: 30/50 | Elementlänge: 500+500


Länge Zugstab / Länge Druckstab mm	IPTD 20	IPTD 30	IPTD 50	IPTD 70	IPTD 90	IPTD 100
l ₁	650	750	750	750	750	860

Länge	änge IPTD 20 – 90 Querkraftstab			IPTD 100			
mm	Standard	Q8	Q10	Standard	Q8	Q10	
l ₂	420	420	530	420	530	630	
l ₃	28	28	33	28	33	42	
ι ₄	15-95	15-95	28-98	15-95	28-98	35-95	
l ₅	420	420	530	420	530	630	
h _{min}	160	160	170	160	170	180	

^{*} abhängig von der Höhe

Bauseitige Bewehrung

ISOPRO® IPTD

- Pos. 1: Anschlussbewehrung für das ISOPRO® Element für negative Momente oben, für positive Momente unten – siehe Tabelle unten
- Pos. 2: Verteilereisen 2 x 2 Ø 8 balkon- und deckenseitig
- Pos. 4: Konstruktive Randeinfassung am freien Balkonrand nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angaben des Tragwerksplaners (nicht dargestellt)
- Pos. 5: Balkon- und deckenseitige Aufhängebewehrung siehe Tabelle

Anschlussbewehrung Pos. 1

	IPTD 20	IPTD 30	IPTD 50	IPTD 70	IPTD 90	IPTD 100
a _{s,erf} cm²/m	4,71	6,79	9,05	11,31	13,57	18,47
Vorschlag	6 Ø 10	6 Ø 12	8 Ø 12	10 Ø 12	12 Ø 12	12 Ø 14

Aufhängebewehrung Pos. 5

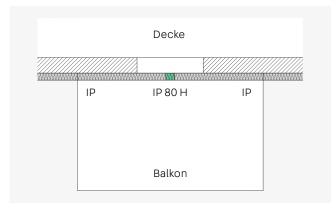
			IPTD 20 – 90	IPTD 1		
	Standard	Q8	Q10	Standard	Q8	Q10
a _{s,erf} cm²/m	1,21	2,13	3,10	2,13	3,10	4,14
Vorschlag	Ø 6/200	Ø 8/200	Ø 10/200	Ø 8/200	Ø 10/200	Ø 10/150

Elemente für besondere Lasten

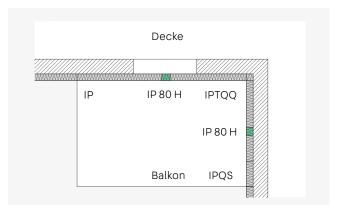
ISOPRO® IP80-H

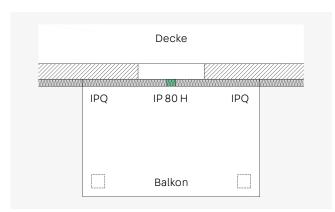
Elemente für planmäßig auftretende Horizontallasten

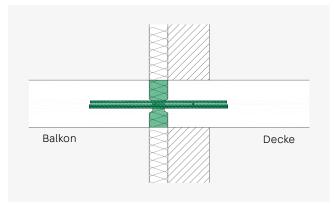
IP 80-H


- ISOPRO® 80 H X zur Übertragung von horizontalen Kräften senkrecht zur Dämmfuge
- ISOPRO® 80 H XY zur Übertragung von horizontalen Kräften senkrecht und parallel zur Dämmfuge
- Tragstufe X1, X2, X1Y1, X2Y2
- Betondeckung fest definiert (siehe Produktdetails)
- Elementhöhe ab 160 mm
- Feuerwiderstandsklasse REI 120 verfügbar

Typenbezeichnung




In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


 ${\tt ISOPRO}^{\otimes}\,80\,{\tt H}$ – Auskragender Balkon mit planmäßig auftretenden Horizontalkräften

 ${\tt ISOPRO}^{\otimes}$ 80 H – Inneneckbalkon mit planmäßig auftretenden Horizontalkräften

ISOPRO® 80 H - Balkon auf Pendelstützen mit konstruktiv verankerten Horizontalkräften

ISOPRO® 80 H - Einbauschnitt im Wärmedämmverbundsystem

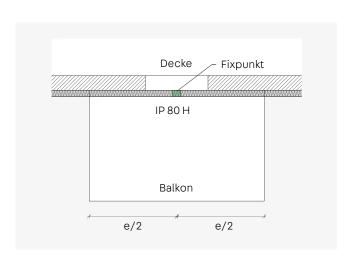
Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Kräfte in kN

	HX1	HX2	HX1Y1	H X2Y2
Querkraft V _{Rd,y}	-	-	± 10,30	± 34,80
Normalkraft N _{Rd,x}	± 11,50	± 55,90	± 11,50	± 55,90

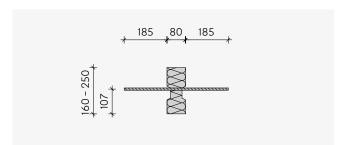
Abmessungen und Belegung

	HX1	HX2	HX1Y1	H X2Y2
Zug-/Druckstäbe	1 Ø 10	1 Ø 14	1 Ø 10	1 Ø 14
Querkraftstäbe	_	_	2 x 1 Ø 10	2 x 1 Ø 12
Elementlänge in mm	150	150	150	150

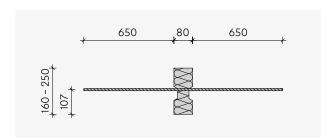

Hinweise zur Bemessung

- Anzahl und Position von ISOPRO® 80 H erfolgt nach Angaben des Tragwerksplaners.
- Beim Einsatz von ISOPRO® 80 H ist darauf zu achten, dass sich die Länge und somit auch die Tragfähigkeit des Linienanschlusses um den Anteil der eingesetzten H Elemente reduziert.
- Durch den Einsatz von ISOPRO® 80 H werden Fixpunkte geschaffen. Dies ist bei der Wahl des maximal zulässigen Dehnfugenabstandes zu berücksichtigen.
- Die Stäbe von ISOPRO® 80 H werden beidseitig der Dämmfuge verankert. Es ist keine Anschlussbewehrung für die H Elemente erforderlich.

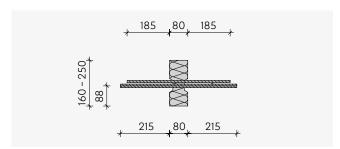
Dehnfugenabstand

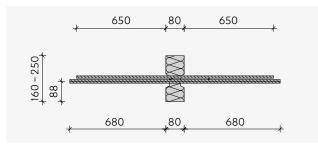

Durch den Einsatz von ISOPRO® 80 H wird ein Fixpunkt geschaffen, wodurch es zu Zwängungen kommt. Daher reduziert sich der maximal zulässige Dehnfugenabstand beim Einsatz

von ISOPRO $^{\circ}$ 80 H auf e/2. Der halbe maximale Dehnfugenabstand wird immer vom Fixpunkt aus gemessen.

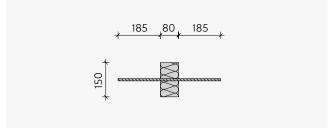


Elementabmessungen

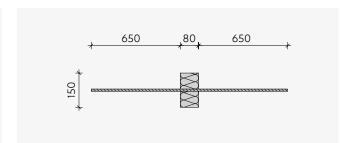

Ansicht


ISOPRO® 80 H X1

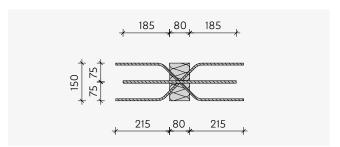
ISOPRO® 80 H X2

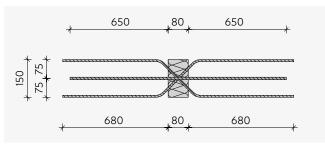


ISOPRO® 80 H X1Y1

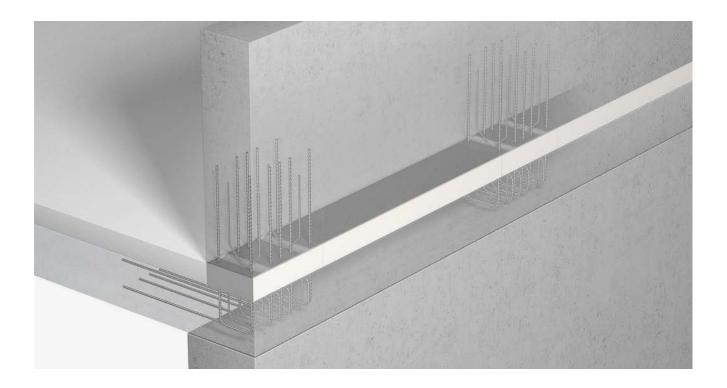


ISOPRO® 80 H X2Y2


Draufsicht

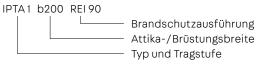

ISOPRO® 80 H X1

ISOPRO® 80 H X2

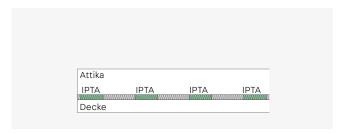

ISOPRO® 80 H X1Y1

ISOPRO® 80 H X2Y2

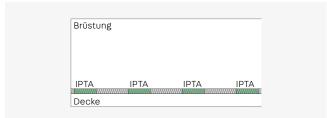
ISOPRO® IPTA

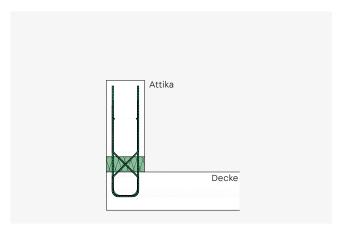

Elemente für Attiken und Brüstungen

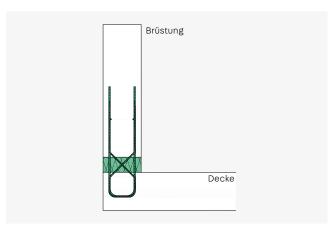
ISOPRO® IPTA


- Zur Übertragung von Normalkräften, positiven und negativen Momenten sowie Horizontalkräften
- Tragstufen IPTA 1 und IPTA 2
- Elementlänge 350 mm
- Attika-/Brüstungsbreite 150 bis 250 mm
- Betondeckung variiert in Abhängigkeit der Attikastärke siehe Elementaufbau
- Deckenstärke ab 160 mm
- Dämmstärke 80 mm optional 60 mm möglich
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)

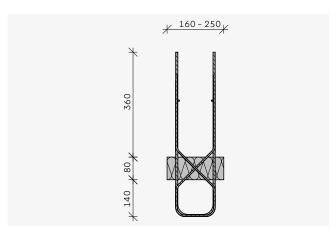
Typenbezeichnung



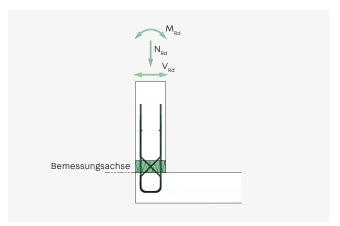

In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


ISOPRO® IPTA - Ansicht aufgesetzte Attika

ISOPRO® IPTA - Ansicht aufgesetzte Brüstung



ISOPRO® IPTA - Einbauschnitt aufgesetzte Attika



ISOPRO® IPTA - Einbauschnitt aufgesetzte Brüstung

Elementaufbau

Vorzeichenregelung/Statisches System

Bemessung – Elementaufbau

Bemessungstabelle ISOPRO® IPTA 1 für Beton ≥ C25/30

		IPTA 1 – b < 200 mm	IPTA 1 − b ≥ 200 mm
AAa waa aa ta Aa Ilah ka	$N_{Ed} = 0 \text{ kN}$	± 1,75	± 2,5
Moment M _{Rd} kNm	N _{Ed} > 0 kN	±(1,75 - N _{Ed} /2 · 0,092)	±(2,5 - N _{Ed} /2 · 0,132)
Normalizant N. J.N.	$M_{Ed} = 0 \text{ kNm}$	38,0	38,0
Normalkraft N _{Rd} kN	M _{Ed} ≠ 0 kNm	38,0 - M _{Ed} /0,092 · 2	38,0 - M _{Ed} /0,132 · 2
Horizontalkraft V _{Rd} kN		± 12,0	± 12,0

Bemessungstabelle ISOPRO® IPTA 2 für Beton ≥ C25/30

		IPTA 2 – b < 200 mm	IPTA 2 – b ≥ 200 mm
Moment M. kNm	$N_{Ed} = 0 \text{ kN}$	± 4,4	± 6,3
Moment M _{Rd} kNm	$N_{Ed} > 0 \text{ kN}$	±(4,4 - N _{Ed} /2 · 0,092)	$\pm (6,3 - N_{Ed}/2 \cdot 0,132)$
Normalkraft N KN	$M_{Ed} = 0 \text{ kNm}$	95,0	95,0
Normalkraft N _{Rd} kN	$M_{Ed} \neq 0 \text{ kNm}$	95,0 - M _{Ed} /0,092 · 2	95,0 - M _{Ed} /0,132 · 2
Horizontalkraft V _{Rd} kN		± 12,0	± 12,0

Betondeckung

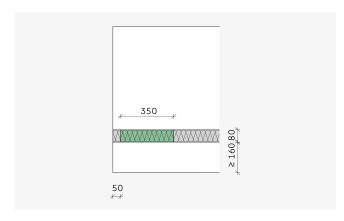
Attika-/Brüstungsbreite b mm	Betondeckung cv mm
150	25
160	30
170	35
180	40
190	45
200	30
210	35
220	40
230	45
240	50
250	55

Belegung und Abmessungen

	IPTA 1	IPTA 2
Elementlänge mm		350
Attika-/Brüstungsbreite b mm		150 - 250
Zug-/Druckstäbe	2 Ø 8	5 Ø 8
Horizontalkraftstäbe	2 x 2 Ø 6	2 x 2 Ø 6

Hinweise zur Bemessung

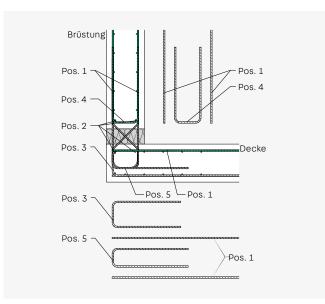
Als Normalkraft kann lediglich eine Druckkraft übertragen werden. Die in der Tabelle angegebene Normalkraft $N_{\rm Rd}$ entspricht der maximal übertragbaren Druckkraft in Abhängigkeit des Typs und der Betongüte.


Dehnfugenabstand – Bauseitige Bewehrung

Maximal zulässiger Dehnfugenabstand

IPTA 1 und IPTA 2

13,0


Randabstand

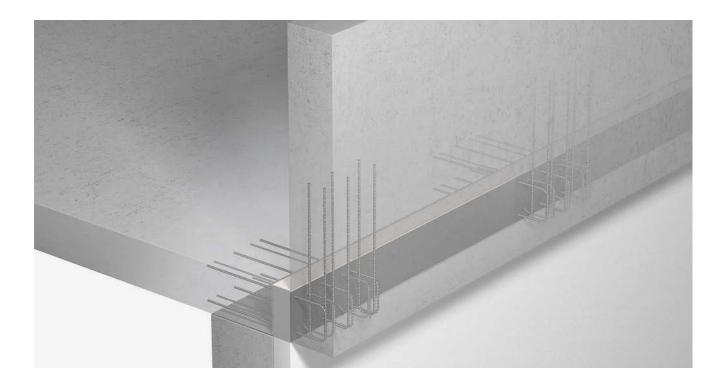
An den Decken- und Brüstungsrändern sowie an Dehnfugen sind die folgenden Randabstände einzuhalten:

- Im Bereich der Brüstung ist kein Randabstand erforderlich.
- Im Bereich der Decke ist ein Randabstand von 50 mm einzuhalten.

ISOPRO® IPTA

- Pos. 1: Anschlussbewehrung für das ISOPRO® Element in der Brüstung und in der Decke – siehe Tabelle
- Pos. 2: Verteilereisen 2 x 2 Ø 8 brüstungs- und deckenseitig
- Pos. 3: Konstruktive Randeinfassung nach DIN EN 1992-1-1 mind. Ø 6/250 bzw. nach Angabe des Tragwerksplaners
- Pos. 4: Aufhängebewehrung für das ISOPRO® Element in der Brüstung siehe Tabelle unten
- Pos. 5: Werkseitig mitgelieferte Anschlussbügel
- Für IPTA Elemente mit Breite 150, 160 und 200 mm ist die bauseitige Bewehrung der Attika/Brüstung innerhalb der Elementbewehrung anzuordnen, da diese eine Betondeckung von < 35 mm aufweisen.

Anschluss- und Aufhängebewehrung

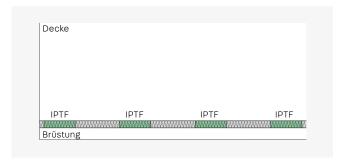

Anschlussbewehrung Pos. 1 Aufhänge

Δ	ufh	äng	ebe	wehr	บทฐ	Pos.	4

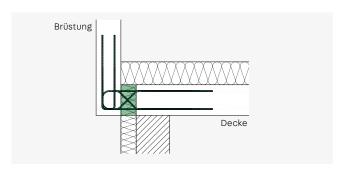
	IPTA 1	IPTA 2	IPTA 1 und IPTA 2
a _{s,erf} cm ² /m	0,50	1,10	0,30
Vorschlag	2Ø8	4 Ø 8	Ø 6/250

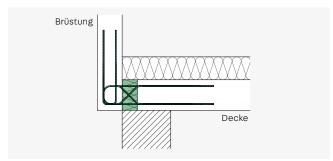
ISOPRO® IPTF

Elemente für vorgesetzte Brüstungen


ISOPRO® IPTF

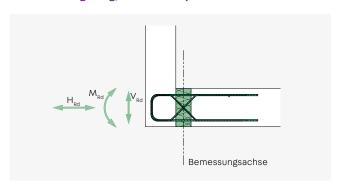
- Zur Übertragung von positiven und negativen Querkräften, positiven und negativen Momenten sowie Horizontalkräften
- Elementlänge 350 mm
- Elementhöhe 160 bis 250 mm
- Betondeckung variiert in Abhängigkeit der Elementhöhe siehe Elementaufbau
- Brüstungsbreite ab 150 mm
- Dämmstärke 80 mm optional 60 mm möglich
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)


Typenbezeichnung IPTF h200 REI 90 Brandschutzausführung Elementhöhe Typ


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.

ISOPRO® IPTF - Draufsicht auf vorgesetzte Brüstung

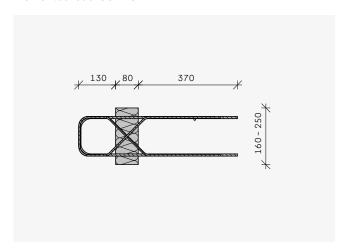
 ${\tt ISOPRO}^{\circledcirc} \, {\tt IPTF-Einbauschnitt\,einer\,vorgesetzten\,Br\"{u}stung\,mit\,W\"{a}rmed\"{a}mmverbundsystem}$



 ${\tt ISOPRO}^{\circledcirc} \, {\tt IPTF-Einbauschnitt\,einer\,vorgesetzten\,Br\"{u}stung\,mit\,einschaligem\,} \\ Mauerwerk$

Bemessungstabelle für Beton ≥ C25/30

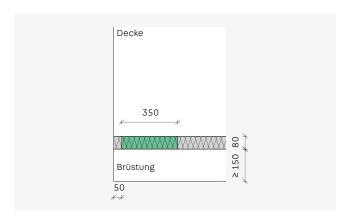
	IPTF h < 200 mm	IPTF h ≥ 200 mm
Moment M _{Rd} kNm	± 2,1	± 3,0
Horizontalkraft N _{Rd} KN	± 3,5	± 3,5
Querkraft V _{Rd} kN	± 12,0	± 12,0


Vorzeichenregelung/Statisches System

55

Elementaufbau – Dehnfugenabstand

Elementaufbau ISOPRO® IPTF

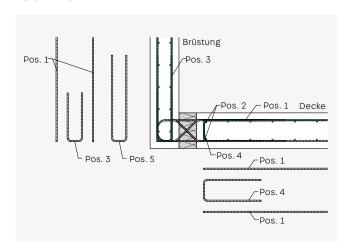

Belegung und Abmessungen

Betondeckung

	IPTF	Elementhöhe h mm	Betondeckung cv mm
Elementlänge mm	350	160	30
Elementhöhe h mm	160 - 250	170	35
Zug-/Druckstäbe	3 Ø 8	180	40
Querkraftstäbe	2 Ø 6	190	45
		200	30
Maximal zulässiger Dehnfugen	abstand	210	35
	IPTF	220	40
Fugenabstand e m	13,0	230	45
		240	50

250

Randabstand



An den Decken- und Brüstungsrändern sowie an Dehnfugen sind die folgenden Randabstände einzuhalten:

- Im Bereich der Brüstung ist ein Randabstand von 50 mm einzuhalten.
- $\bullet \quad \text{Im Bereich der Decke ist kein Randabstand erforderlich}.$

Bauseitige Bewehrung

ISOPRO® IPTF

- Pos. 1: Anschlussbewehrung f
 ür das ISOPRO[®] Element in der Br
 üstung und in der Decke – siehe Tabelle
- Pos. 2: Verteilereisen 2 x 2 Ø 8 brüstungs- und deckenseitig
- Pos. 3: Anschlussbügel für das ISOPRO® Element in der Brüstung – siehe Tabelle unten
- Pos. 4: Aufhängebewehrung für das ISOPRO® Element
- Pos. 5: Werkseitig mitgelieferte Anschlussbügel 3 Ø 8

Anschluss- und Aufhängebewehrung

	Anschlussbewehrung Pos. 1	Anschlussbewehrung Bügel Pos. 3	Aufhängebewehrung Pos. 4
a _{s,erf} cm ² /m	0,60	1,51	1,13
Vorschlag	3 Ø 8	3 Ø 8	Ø 6/250

Hinweise

Bei der Bewehrungsführung und der Wahl der Abstände zwischen den ISOPRO® IPTF Elementen ist auf die Betonierbarkeit zu achten. Für ISOPRO® IPTF Elemente mit Breiten von 160 bis 190 mm kann Pos. 3 entfallen, da diese durch Pos. 5 abgedeckt ist.

Beratung

Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

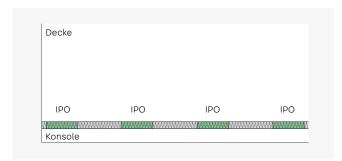
T +49 7742 9215-300 technik-hbau@pohlcon.com

ISOPRO® IPO

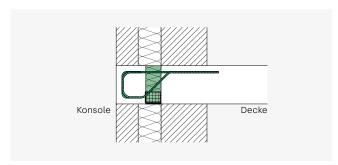
Elemente für Konsolen

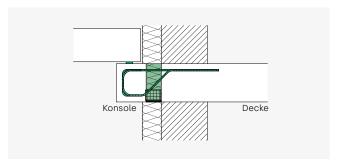
ISOPRO® IPO

- Für Konsolen, die als Auflager von Mauerwerk oder Fertigteilelementen dienen
- Zur Übertragung von positiven Querkräften und den daraus resultierenden negativen Momenten sowie Horizontalkräften
- Tragstufen IPO 16 und IPO 20
- Elementlänge 350 mm
- Elementhöhe 180 bis 250 mm
- Betondeckung variiert in Abhängigkeit der Elementhöhe siehe Elementaufbau

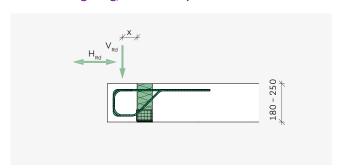

Typ und Tragstufe

- Konsolbreite IPO 16 ab 160 mm IPO 20 ab 200 mm
- Dämmstärke 80 mm optional 60 mm möglich
- Feuerwiderstandsklasse REI 120 verfügbar


Typenbezeichnung IPO 20 h200 REI 120 Brandschutzausführung Elementhöhe


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.

ISOPRO® IPO - Draufsicht Konsole



ISOPRO® IPO - Konsole mit Verblendmauerwerk

 ${\tt ISOPRO}^{\otimes}{\tt IPO} - {\tt Konsole} \ {\tt als} \ {\tt Auflager} \ {\tt f\"{u}reinFertigteilelement}, \ {\tt Auflage} \ {\tt mit} \ {\tt Zentrierlager}$

Vorzeichenregelung/Statisches System

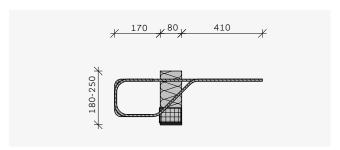
Bemessung – Elementaufbau

Bemessungstabelle ISOPRO® IPO 16 für Beton ≥ C25/30

IPO 16

Lasteinleitungspunkt x	mm	60 - 90	100	110
	180	26,9	25,9	17,3
Querkraft V _{Rd} kN in	200	26,9	26,9	20,3
Abhängigkeit der	220	26,9	26,9	23,3
Elementhöhe h mm	240	26,9	26,9	23,1
	250	26,9	26,9	22,9
Horizontalkraft H _{Rd} kN		± 2,5	± 2,5	± 2,5

Bemessungstabelle ISOPRO® IPO 20 für Beton ≥ C25/30


IPO 20

Lasteinleitungspunkt x mm		60 - 120	130	140	150
	180	29,1	25,2	18,5	12,7
Querkraft V _{Rd} kN in	200	29,1	29,1	21,7	14,9
Abhängigkeit der	220	29,1	29,1	24,9	17,1
Elementhöhe h mm	240	29,1	29,1	24,8	16,9
	250	29,1	29,1	24,6	16,8
Horizontalkraft H _{Rd} kN		± 2,5	± 2,5	± 2,5	± 2,5

Elementaufbau ISOPRO® IPO 16

130 x 80 x 410

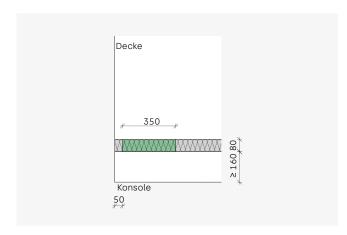
Elementaufbau ISOPRO® IPO 20

Belegung und Abmessungen

IPO 16 und IPO 20

Elementlänge mm	350
Elementhöhe h mm	180 - 250
Zugstäbe	2 Ø 8
Querkraftstäbe	3 Ø 8
Drucklager	2

Betondeckung

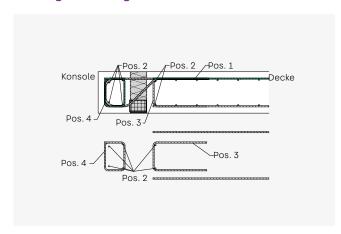

Elementhöhe h mm	Betondeckung oben cv mm	Betondeckung unten cv _u mm
180	30	30
190	40	30
200	30	30
210	40	30
220	30	30
230	40	30
240	40	40
250	50	40

Dehnfugen – Bauseitige Bewehrung

Maximal zulässiger Dehnfugenabstand

	IPO
Fugenabstand e m	13,0

Randabstand



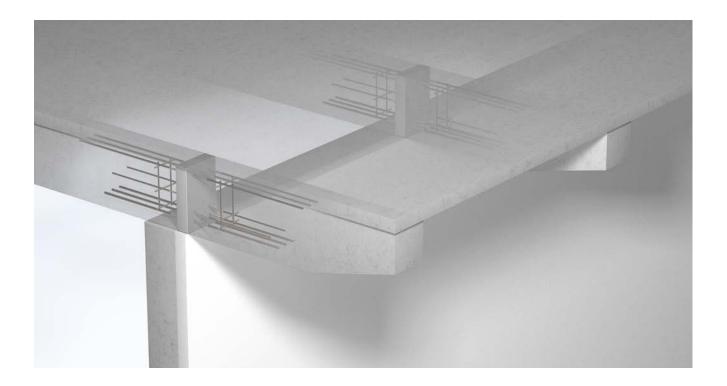
An den Decken- und Konsolrändern sowie an Dehnfugen sind die folgenden Randabstände einzuhalten:

Im Bereich der Konsole ist ein Randabstand von 50 mm einzuhalten.

Im Bereich der Decke ist kein Randabstand erforderlich.

Bauseitige Bewehrung ISOPRO® IPO

- Pos. 1: Anschlussbewehrung für das ISOPRO $^{\circ}$ Element 3 Ø 8
- Pos. 2: Verteilereisen 2 Ø 8 deckenseitig mind. 4 Ø 8 in der Konsole
- Pos. 3: Konstruktive Randeinfassung nach DIN EN 1992-1-1 mind. Ø 6/250
- Pos. 4: Geschlossener Bügel in der Konsole nach Angaben des Tragwerksplaners

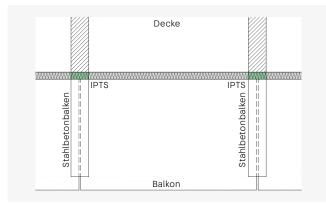

Beratung

Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

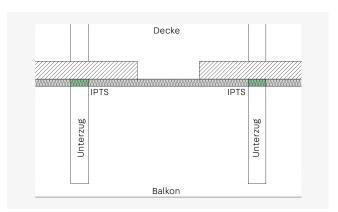
T +49 7742 9215-300 technik-hbau@pohlcon.com

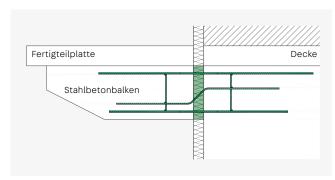
ISOPRO® IPTS

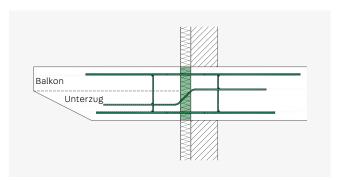
Elemente für auskragende Unterzüge


ISOPRO® IPTS

- Zur Übertragung von negativen Momenten und positiven Querkräften
- Tragstufen IPTS 1 bis IPTS 4
- Elementbreiten 220 bis 300 mm
- Elementhöhen 300 bis 600 mm
- Betondeckung cv50 oben, unten und seitlich
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)


Typenbezeichnung IPTS 2 b/h = 220/400 REI 90 Brandschutzausführung Elementabmessungen Typ und Tragstufe


In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.


 ${\tt ISOPRO}^{\scriptsize 0} \, {\tt IPTS-Balkonkonstruktion} \, {\tt mit} \, {\tt nicht} \, {\tt statisch} \, {\tt verbundenen} \, {\tt Fertigate} \, {\tt teilplatten} \, {\tt und} \, {\tt tragenden} \, {\tt Stahlbetonbalken} \, {\tt tragenden} \, {\tt Stahlbetonbalken} \, {\tt tragenden} \, {\tt tragend$

ISOPRO® IPTS – Balkonkonstruktion mit monolithisch mit der Balkonplatte verbundenen Unterzügen

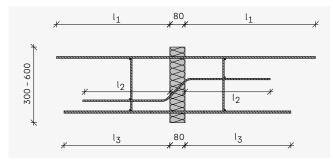
ISOPRO® IPTS - Einbauschnitt mit Fertigteilplatten

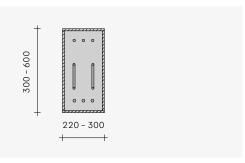
ISOPRO® IPTS – Einbauschnitt mit monolithisch mit der Balkonplatte verbundenen Unterzügen

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente \mathbf{M}_{Rd} in kNm

Elementhöhe mm	IPTS 1	IPTS 2	IPTS 3	IPTS 4
300	19,4	26,4	36,1	47,7
350	24,5	33,5	45,9	60,8
400	29,6	40,5	55,7	73,9
600	50,1	68,8	94,7	126,4


Bemessungswerte der aufnehmbaren Querkräfte V_{Rd} kN


	IPTS 1	IPTS 2	IPTS 3	IPTS 4
Querkraft V _{Rd} kN	30,9	48,3	69,5	94,6

Abmessungen und Belegung

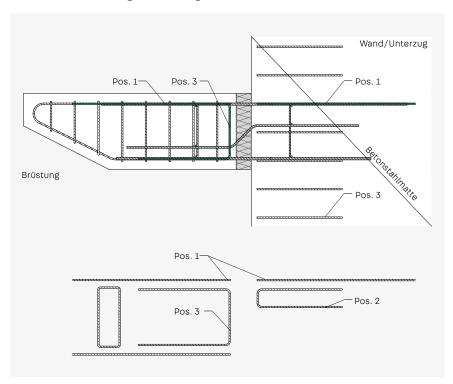
	IPTS 1	IPTS 2	IPTS 3	IPTS 4
Elementbreite mm	220 - 300	220 - 300	220 - 300	220 - 300
Elementhöhe mm	300 - 600	300 - 600	300 - 600	300 - 600
Zugstäbe	3 Ø 10	3 Ø 12	3 Ø 14	3 Ø 16
Querkraftstäbe	2 Ø 8	2 Ø 10	2 Ø 12	2 Ø 14
Druckstäbe	3 Ø 12	3 Ø 14	3 Ø 16	3 Ø 20

Elementaufbau

ISOPRO® IPTS

ISOPRO® IPTS - Ausführung mit Brandschutzplatten - REI 90

	IPTS 1	IPTS 2	IPTS 3	IPTS 4
Länge Zugstab* l ₁	860	1.030	1.180	1.890
Länge Querkraftstab l ₂	460	575	680	790
Länge Druckstab lʒ	550	650	785	955


^{*} Die Verankerungslänge der Zugstäbe ist für den Verbundbereich 1 "gute Verbundbedingungen" ausgelegt. Auf Anfrage kann die Verankerungslänge der Zugstäbe auch für den Verbundbereich 2 "mäßige Verbundbedingungen" ausgelegt werden.

Dehnfugen – Bauseitige Bewehrung

Maximal zulässiger Dehnfugenabstand

	IPTS 1	IPTS 2	IPTS 3	IPTS 4
Fugenabstand e m	11,3	10,1	9,2	8,0

ISOPRO® IPTS bauseitige Bewehrung

- Pos. 1 Anschlussbewehrung für das ISOPRO® Element siehe Tabelle
- Pos. 2 konstruktive Randeinfassung nach DIN EN 1992-1-1 mind. Ø 6/250
- Pos. 3 Aufhängebewehrung für das ISOPRO® Element – siehe Tabelle

Anschlussbewehrung Pos. 1

	IPTS 1	IPTS 2	IPTS 3	IPTS 4
a _{s,erf} cm ² /m	2,35	3,39	4,61	6,03
Vorschlag	3 Ø 10	3 Ø 12	3 Ø 14	3 Ø 16

Aufhängebewehrung Pos. 3

	IPTS 1	IPTS 2	IPTS 3	IPTS 4
a _{s,erf} cm ² /m	0,71	1,11	1,59	2,17
Vorschlag	2 Ø 8	2 Ø 10	2 Ø 10	2 Ø 12

Beratung

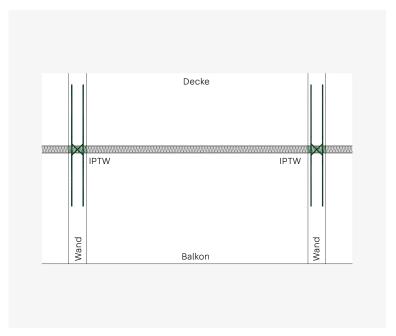
Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

T +49 7742 9215-300 technik-hbau@pohlcon.com

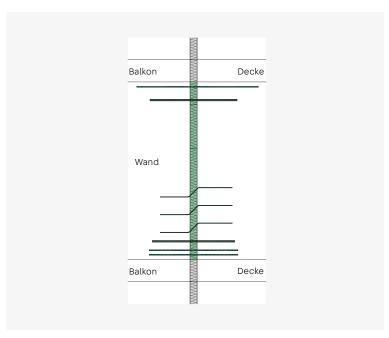
ISOPRO® IPTW

Elemente für auskragende Stahlbetonwände

ISOPRO® IPTW


- Zur Übertragung von negativen Momenten, positiven Querkräften sowie Horizontalkräften
- Tragstufen IPTW1 bis IPTW4
- Elementbreiten 150 bis 250 mm
- Elementhöhen 1.500 bis 3.500 mm
- Verankerungslänge der Zugstäbe für Verbundbereich 2 "mäßige Verbundbedingungen"
- Betondeckung cv50 oben und unten, seitlich cv25 bis cv50 in Abhängigkeit der Elementbreite
- Feuerwiderstandsklasse REI 90 verfügbar (REI 120 mit einer Auslastung von ≤ 85% im GZT)
- Lieferung der Elemente in mindestens 3 Teilelementen Unterteil mit Druck- und Querkraftstäben, Zwischenteil sowie Oberteil mit Zugstäben. Bei großen Elementhöhen werden zusätzliche Zwischenteile ergänzt.

Typenbezeichnung		
IPTW 2 $b/h = 220/2.000$	REI 90	
		Brandschutzausführung
		Elementabmessungen
		Typ und Tragstufe


Anwendung – Elementanordnung

In diesem Kapitel finden sich Planungshilfen und spezifische Informationen zu diesem Produkt. Darüber hinaus sind auch die generellen Hinweise zu Materialien (ab Seite 12), Bemessung (ab Seite 15), Wärme- und Brandschutz (ab Seite 20), Einbau auf der Baustelle (ab Seite 26) etc. zu berücksichtigen.

 ${\tt ISOPRO}^{\otimes} \, {\tt IPTW-Anordnung} \, {\tt der} \, {\tt Elemente} \, {\tt im} \, {\tt Grundriss} \, {\tt in} \, {\tt Kombination} \, {\tt mit} \, {\tt einer} \, {\tt Balkonplatte}$

 ${\tt ISOPRO}^{\otimes} \, {\tt IPTW-Einbauschnitt\,mit\,monolithisch\,mit\,der\,Balkonplatte\,verbundener\,Wandscheibe}$

Bemessungstabelle für Beton ≥ C25/30

Bemessungswerte der aufnehmbaren Momente $M_{_{Rd}}$ in kNm

Elementhöhe mm	IPTW 1	IPTW 2	IPTW 3	IPTW 4
≥1.500	64,7	115,3	178,7	178,7
≥ 1.750	76,6	136,8	212,7	212,7
≥ 2.000	88,4	158,4	246,8	246,8
≥ 2.250	100,3	179,9	280,8	280,8
≥ 2.500	112,1	201,4	314,8	314,8
≥ 2.750	124,0	222,9	348,8	348,8
≥ 3.000	135,8	244,4	382,9	382,9

Bemessungswerte der aufnehmbaren Querkräfte $V_{\rm Rd}$ in kN und Horizontalkräfte $H_{\rm Rd}$ in kN

	IPTW 1	IPTW 2	IPTW 3	IPTW 4
Querkraft V _{Rd} kN	52,1	92,7	154,5	241,3
Horizontalkraft H _{Rd} kN	± 17,4	± 17,4	± 17,4	± 17,4

Abmessungen und Belegung

	IPTW 1	IPTW 2	IPTW 3	IPTW 4
Elementbreite mm	150 - 250	150 - 250	150 - 250	150 - 250
Elementhöhe mm	1.500 - 3.500	1.500 - 3.500	1.500 - 3.500	1.500 - 3.500
Zugstäbe	2 Ø 10	4 Ø 10	4Ø12	4 Ø 12
Querkraftstäbe	6 Ø 6	6 Ø 8	10 Ø 8	10 Ø 10
Horizontalstäbe	2 x 2 Ø 6	2 x 2 Ø 6	2 x 2 Ø 6	2 x 2 Ø 6
Druckstäbe	4 Ø 10	4 Ø 10	6 Ø 12	6 Ø 14

Hinweise zur Bemessung

Die Verankerungslänge der Zugstäbe ist für den Verbundbereich 2 "mäßige Verbundbedingungen" ausgelegt. Momente aus Windbelastung senkrecht zur Wandscheibe können durch das Element ISOPRO® IPTW nicht aufgenommen werden. Diese werden durch die aussteifende Wirkung der monolithisch verbundenen Balkonplatten abgetragen. Ist dies nicht möglich, so kann das ISOPRO® Element IPTW mit einem ISOPRO® Element IPTD ergänzt werden. Dieses ersetzt dann das Zwischenstück.

Beratung

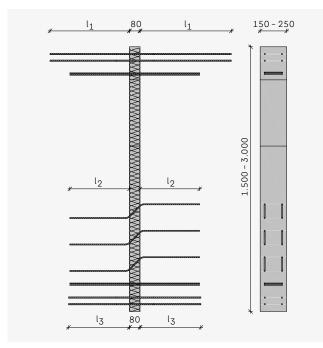
Für weitere Lösungen ist unsere Anwendungstechnik gerne für Sie da:

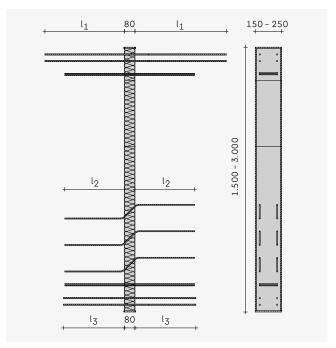
T +49 7742 9215-300 technik-hbau@pohlcon.com

Dehnfugenabstand - Elementaufbau

Dehnfugenabstand

Überschreiten die Bauteilabmessungen den maximal zulässigen Dehnfugenabstand, so sind senkrecht zur Dämmebene Dehnfugen anzuordnen. Der maximal zulässige Dehnfugenabstand e ist abhängig vom maximal über die Dehnfuge hinweg geführten Stabdurchmesser und somit typenabhängig. Durch Fixpunkte wie eine Auflagerung über Eck kommt es zu erhöhten Zwängungen, wodurch der maximal zulässige

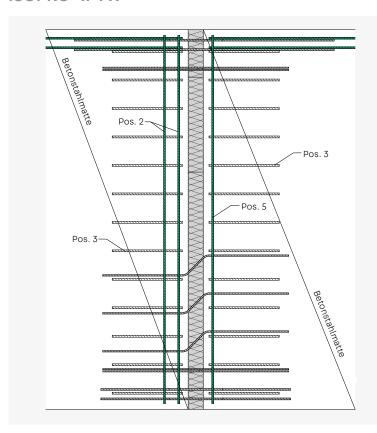

Dehnfugenabstand auf e/2 reduziert werden muss. Der halbe maximale Dehnfugenabstand wird immer vom Fixpunkt aus gemessen.


Werden über ISOPRO® IPTW angeschlossene Wände starr mit langen Balkonplatten verbunden, so gelten die unten angegebenen maximalen Dehnfugenabstände.

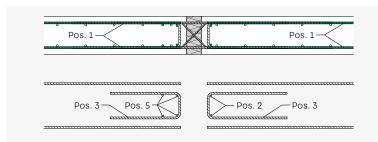
Maximal zulässiger Dehnfugenabstand

	IPTW 1/IPTW 2	IPTW 3	IPTW 4
Fugenabstand e m	13,0	11,3	10,1

Elementaufbau ISOPRO® IPTW


ISOPRO® IPTW

ISOPRO® IPTW - Ausführung mit Brandschutzplatten - REI 90


	IPTW 1	IPTW 2	IPTW 3	IPTW 4
Länge Zugstab l ₁	650	650	750	750
Länge Querkraftstab l ₂	350/410	460	460	575
Länge Querkraftstab horizontal	450	450	450	450
Länge Druckstab lʒ	650	650	850	650

Bauseitige Bewehrung

ISOPRO® IPTW

- Pos. 1 Anschlussbewehrung f
 ür das ISOPRO®
 Element siehe Tabelle
- Pos. 2 Verteilereisen 2 Ø 8
- Pos. 3 konstruktive Randeinfassung nach Angabe des Tragwerksplaners
- Pos. 5 Aufhängebewehrung für das ISOPRO® Element, verankert mit Bügeln – siehe Tabelle
- Beim Betonieren ist auf beidseitiges gleichmäßiges Füllen und Verdichten sowie auf die Lagesicherung zu achten.

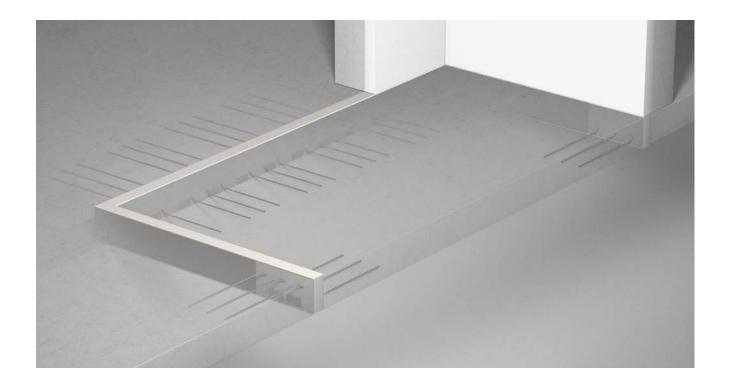


Anschlussbewehrung Pos. 1

	IPTW 1	IPTW 2	IPTW 3	IPTW 4
a _{s,erf} cm ² /m	1,57	3,14	4,5	4,5
Vorschlag	2 Ø 10	4 Ø 10	4 Ø 12	4 Ø 12

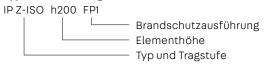
Aufhängebewehrung Pos. 5

	IPTW 1	IPTW 2	IPTW 3	IPTW 4
a _{s,erf} cm ² /m	1,19	2,13	3,55	5,54
Vorschlag	2 x 2 Ø 8	2 x 2 Ø 10	2 x 2 Ø 12	2 x 2 Ø 14



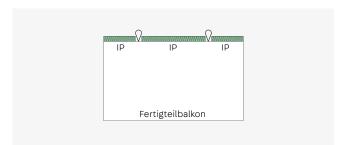
Dämmelemente ohne statische Funktion

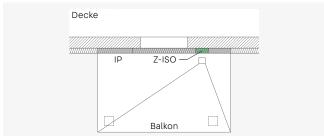
ISOPRO® Z-ISO

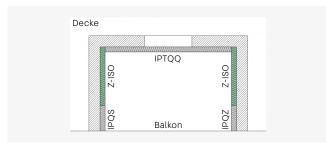

Elemente als Zwischendämmung

ISOPRO® Z-ISO

- Zwischendämmung ohne statische Funktion
- Länge 1,0 m
- Elementhöhen ab 160 mm
- Kurzelemente auf Anfrage
- Feuerwiderstandsklasse EI 120 (FP 1) mit Brandschutzplatten

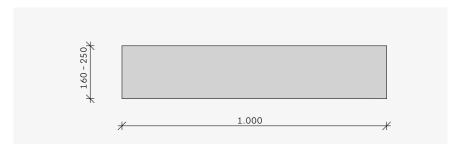

Typenbezeichnung


Anwendung – Elementanordnung

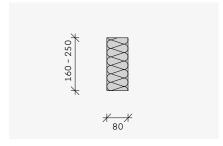

Beim Einsatz von ISOPRO® Elementen Z-ISO ist darauf zu achten, dass sich die Länge und somit auch die Tragfähigkeit des Linienanschlusses um den prozentualen Längenanteil der Z-ISO Elemente zur Gesamtanschlusslänge reduziert. Die Brandschutzklasse des Z-ISO FP1 Elementes entspricht der maximalen Brandschutzklasse der statisch tragenden ISOPRO® Elemente, die im Linienanschluss verwendet werden. Z.B. Z-ISO in Kombination mit ISOPRO® IP – REI 120; Z-ISO in Kombination mit ISOPRO® IPT – REI 90.

ISOPRO® Z-ISO – Balkon als Fertigteil mit Transportankern – die Elemente Z-ISO werden auf der Baustelle ergänzt

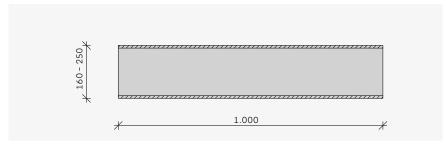
ISOPRO® Z-ISO - Balkon auf Stützen - Z-ISO Elemente im Bereich der Aussparung für die Entwässerung

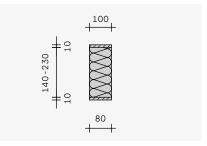


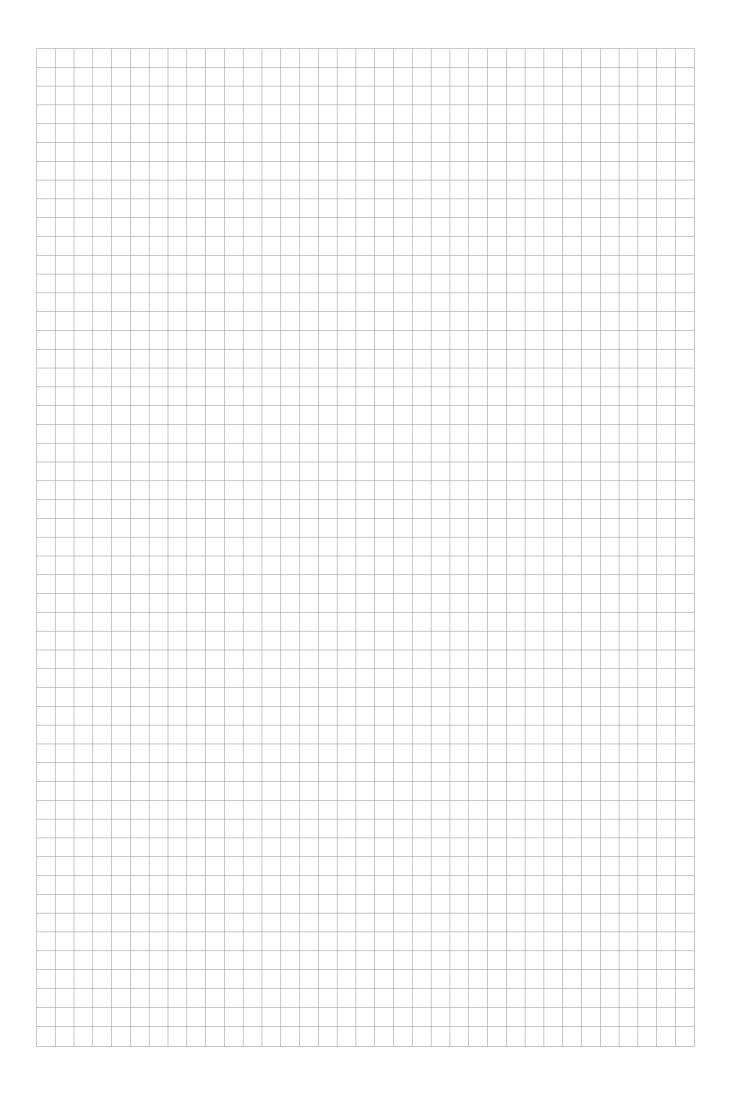
ISOPRO® Z-ISO - Loggia mit punktueller Lagerung mit IPQS/IPQZ



ISOPRO® Z-ISO - Punktueller Einsatz von Attika-Elementen ISOPRO® IPTA


Elementaufbau


ISOPRO® Z-ISO - Produktansicht


ISOPRO® Z-ISO - Produktschnitt



 ${\tt ISOPRO} @ {\tt Z-ISO} \ {\tt FP1-Produktansicht} \ {\tt mit} \ {\tt Brandschutzplatten} \ {\tt oben} \ {\tt und} \ {\tt unten}$

ISOPRO® Z-ISO FP1 - Produktschnitt

Unser Synergie-Konzept für Sie

Mit uns profitieren Sie von der gesammelten Erfahrung dreier etablierter Hersteller, die Produkte und Expertise in einem umfassenden Angebot kombinieren. Das ist das PohlCon-Synergie-Konzept.

Full-Service-Beratung

Unser weitreichendes Beraternetzwerk steht Ihnen zu allen Fragen rund um unsere Produkte vor Ort zur Verfügung. Von der Planung bis hin zur Nutzung genießen Sie die persönliche Betreuung durch unsere qualifizierten Mitarbeiterinnen und Mitarbeiter.

Digitale Lösungen

Unsere digitalen Angebote unterstützen Sie zielgerichtet in der Planung mit unseren Produkten. Von Ausschreibungstexten über CAD-Details und BIM-Daten bis hin zu modernen Softwarelösungen bieten wir Ihnen maßgeschneiderte Unterstützung für Ihre Planung.

7 Anwendungsfelder

Wir denken in ganzheitlichen Lösungen. Deshalb haben wir unsere Produkte für Sie in sieben Anwendungsfelder zusammengefasst, in denen Sie von der Synergie des PohlCon-Produktportfolios profitieren können.

10 Produktkategorien

Um das passende Produkt in unserem umfangreichen Sortiment noch schneller finden zu können, sind die Produkte in zehn Produktkategorien unterteilt. So können Sie zielsicher zwischen unseren Produkten navigieren.

Individuelle Sonderlösungen

Für Ihr Projekt eignet sich kein Serienprodukt auf dem Markt? Außergewöhnliche Herausforderungen meistern wir mit der langjährigen Expertise der drei Herstellermarken im Bereich individueller Lösungen. So realisieren wir gemeinsam einzigartige Bauprojekte.

PohlCon GmbH Nobelstraße 51

12057 Berlin

T +49 30 68283-04 F +49 30 68283-383

www.pohlcon.com